The emergence of Digital Justice in conjunction with advanced Data Analysis techniques presents the opportunity to advance the criminal justice system toward an innovative Data-Driven ap- proach. An important issue of public safety is the analysis of le- gal recidivism. Assessing recidivism is a complex measurement problem that necessitates reconstructing a subject’s criminal his- tory from criminal records, which usually reside in different au- tonomous databases. In addition, the collection and processing of sensitive legal-related data about individuals imposes consideration of privacy legislation and confidentiality implications. This paper presents the design and development of a Proof of Concept (PoC) for a Privacy-Preserving Data Integration (PPDI) framework to es- tablish a Data Warehouse across criminal and court sources within the Italian Justice Domain and a Data Mart to assess the recidivism phenomena.

Privacy-Preserving Data Integration for Recidivism Assessment / Trigiante, Lisa; Beneventano, Domenico; Bergamaschi, Sonia. - In: INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. - ISSN 0975-8887. - 187:13(2025), pp. 1-8. [10.5120/ijca2025925080]

Privacy-Preserving Data Integration for Recidivism Assessment

Trigiante, Lisa;Beneventano, Domenico;Bergamaschi, Sonia
2025

Abstract

The emergence of Digital Justice in conjunction with advanced Data Analysis techniques presents the opportunity to advance the criminal justice system toward an innovative Data-Driven ap- proach. An important issue of public safety is the analysis of le- gal recidivism. Assessing recidivism is a complex measurement problem that necessitates reconstructing a subject’s criminal his- tory from criminal records, which usually reside in different au- tonomous databases. In addition, the collection and processing of sensitive legal-related data about individuals imposes consideration of privacy legislation and confidentiality implications. This paper presents the design and development of a Proof of Concept (PoC) for a Privacy-Preserving Data Integration (PPDI) framework to es- tablish a Data Warehouse across criminal and court sources within the Italian Justice Domain and a Data Mart to assess the recidivism phenomena.
2025
2025
187
13
1
8
Privacy-Preserving Data Integration for Recidivism Assessment / Trigiante, Lisa; Beneventano, Domenico; Bergamaschi, Sonia. - In: INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. - ISSN 0975-8887. - 187:13(2025), pp. 1-8. [10.5120/ijca2025925080]
Trigiante, Lisa; Beneventano, Domenico; Bergamaschi, Sonia
File in questo prodotto:
File Dimensione Formato  
trigiante-2025-ijca-925080.pdf

Open access

Descrizione: Articolo completo
Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1387770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact