Organic neuromorphic electronics aim to emulate the adaptive behavior of biological synapses using soft, biocompatible materials capable of analog and stimulus-responsive modulation. While azobenzene-based semiconductors provide reversible light-induced switching, their application in mixed ionic-electronic conductors for neuromorphic systems remains largely unexplored. In this study, photoresponsive organic photoelectrochemical transistors (OPECTs) are engineered by functionalizing PEDOT:PSS with azobenzene derivatives bearing nitro or fluorine substituents. These modifications alter the electronic structure and surface properties of the gate, enabling systematic tuning of interfacial capacitance, a critical parameter governing photogating and neuromorphic response. Optical and electrochemical measurements, supported by DFT calculations reveal that substituent-dependent modulation of bulk and interfacial capacitance directly impacts gating efficiency. Devices exhibit reversible, analog conductance changes under optical and electrical co-stimulation, emulating both short- and long-term synaptic plasticity. These results establish a structure-capacitance-function relationship and provide a chemically tunable platform for the development of light-responsive neuromorphic interfaces in adaptive bioelectronics.

Designing Light-Sensitive Organic Semiconductors with Azobenzenes for Photoelectrochemical Transistors as Neuromorphic Platforms / Berndt Paro, I.; Gini, M.; D' Elia, F.; Massaro, A.; Corrado, F.; Rana, D.; Varela, A.; Elli, G.; Baumann, M.; Piccini, G.; Petti, L.; Leonori, D.; Muñoz-García, A. B.; Pavone, M.; Offenhäusser, A.; Criscuolo, V.; Santoro, F.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - (2025), pp. 1-10. [10.1002/advs.202509125]

Designing Light-Sensitive Organic Semiconductors with Azobenzenes for Photoelectrochemical Transistors as Neuromorphic Platforms

Piccini G.;
2025

Abstract

Organic neuromorphic electronics aim to emulate the adaptive behavior of biological synapses using soft, biocompatible materials capable of analog and stimulus-responsive modulation. While azobenzene-based semiconductors provide reversible light-induced switching, their application in mixed ionic-electronic conductors for neuromorphic systems remains largely unexplored. In this study, photoresponsive organic photoelectrochemical transistors (OPECTs) are engineered by functionalizing PEDOT:PSS with azobenzene derivatives bearing nitro or fluorine substituents. These modifications alter the electronic structure and surface properties of the gate, enabling systematic tuning of interfacial capacitance, a critical parameter governing photogating and neuromorphic response. Optical and electrochemical measurements, supported by DFT calculations reveal that substituent-dependent modulation of bulk and interfacial capacitance directly impacts gating efficiency. Devices exhibit reversible, analog conductance changes under optical and electrical co-stimulation, emulating both short- and long-term synaptic plasticity. These results establish a structure-capacitance-function relationship and provide a chemically tunable platform for the development of light-responsive neuromorphic interfaces in adaptive bioelectronics.
2025
1
10
Designing Light-Sensitive Organic Semiconductors with Azobenzenes for Photoelectrochemical Transistors as Neuromorphic Platforms / Berndt Paro, I.; Gini, M.; D' Elia, F.; Massaro, A.; Corrado, F.; Rana, D.; Varela, A.; Elli, G.; Baumann, M.; Piccini, G.; Petti, L.; Leonori, D.; Muñoz-García, A. B.; Pavone, M.; Offenhäusser, A.; Criscuolo, V.; Santoro, F.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - (2025), pp. 1-10. [10.1002/advs.202509125]
Berndt Paro, I.; Gini, M.; D' Elia, F.; Massaro, A.; Corrado, F.; Rana, D.; Varela, A.; Elli, G.; Baumann, M.; Piccini, G.; Petti, L.; Leonori, D.; Mu...espandi
File in questo prodotto:
File Dimensione Formato  
Advanced Science - 2025 - Berndt Paro - Designing Light‐Sensitive Organic Semiconductors with Azobenzenes for.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1387173
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact