Motivated by the image denoising problem and the undesirable stair-casing effect of the total variation method, we introduce bounded variation spaces with generalized Orlicz growth. Our setup covers earlier variable exponent and double phase models. We study the norm and modular of the new space and derive a formula for the modular in terms of the Lebesgue decomposition of the derivative measure and a location dependent recession function. We also show that the modular can be obtained as the Γ-limit of uniformly convex approximating energies.

Bounded variation spaces with generalized Orlicz growth related to image denoising / Eleuteri, Michela; Harjulehto, Petteri; H??st??, Peter. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 310:2(2025), pp. 1-26. [10.1007/s00209-025-03731-9]

Bounded variation spaces with generalized Orlicz growth related to image denoising

Michela Eleuteri;
2025

Abstract

Motivated by the image denoising problem and the undesirable stair-casing effect of the total variation method, we introduce bounded variation spaces with generalized Orlicz growth. Our setup covers earlier variable exponent and double phase models. We study the norm and modular of the new space and derive a formula for the modular in terms of the Lebesgue decomposition of the derivative measure and a location dependent recession function. We also show that the modular can be obtained as the Γ-limit of uniformly convex approximating energies.
2025
310
2
1
26
Bounded variation spaces with generalized Orlicz growth related to image denoising / Eleuteri, Michela; Harjulehto, Petteri; H??st??, Peter. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 310:2(2025), pp. 1-26. [10.1007/s00209-025-03731-9]
Eleuteri, Michela; Harjulehto, Petteri; H??st??, Peter
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1383688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact