We prove well posedness and stability in L-1 for a class of mixed hyperbolic-parabolic nonlinear and nonlocal equations in a bounded domain with no flow along the boundary. While the treatment of boundary conditions for the hyperbolic equation is standard, the extension to L-1 of classical results about parabolic equations with Neumann conditions is here achieved.
Nonlocal Mixed Systems With Neumann Boundary Conditions / Colombo, R. M.; Rossi, E.; Sylla, A.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 48:13(2025), pp. 12632-12643. [10.1002/mma.11051]
Nonlocal Mixed Systems With Neumann Boundary Conditions
Rossi E.;
2025
Abstract
We prove well posedness and stability in L-1 for a class of mixed hyperbolic-parabolic nonlinear and nonlocal equations in a bounded domain with no flow along the boundary. While the treatment of boundary conditions for the hyperbolic equation is standard, the extension to L-1 of classical results about parabolic equations with Neumann conditions is here achieved.| File | Dimensione | Formato | |
|---|---|---|---|
|
M2AS2025.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




