We prove well posedness and stability in L-1 for a class of mixed hyperbolic-parabolic nonlinear and nonlocal equations in a bounded domain with no flow along the boundary. While the treatment of boundary conditions for the hyperbolic equation is standard, the extension to L-1 of classical results about parabolic equations with Neumann conditions is here achieved.

Nonlocal Mixed Systems With Neumann Boundary Conditions / Colombo, R. M.; Rossi, E.; Sylla, A.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 48:13(2025), pp. 12632-12643. [10.1002/mma.11051]

Nonlocal Mixed Systems With Neumann Boundary Conditions

Rossi E.;
2025

Abstract

We prove well posedness and stability in L-1 for a class of mixed hyperbolic-parabolic nonlinear and nonlocal equations in a bounded domain with no flow along the boundary. While the treatment of boundary conditions for the hyperbolic equation is standard, the extension to L-1 of classical results about parabolic equations with Neumann conditions is here achieved.
2025
48
13
12632
12643
Nonlocal Mixed Systems With Neumann Boundary Conditions / Colombo, R. M.; Rossi, E.; Sylla, A.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 48:13(2025), pp. 12632-12643. [10.1002/mma.11051]
Colombo, R. M.; Rossi, E.; Sylla, A.
File in questo prodotto:
File Dimensione Formato  
M2AS2025.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1383169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact