In this work we introduce the REVERINO dataset, a collection of 4533 pairs of Latin regesta with their respective full text medieval pontifical document extracted from two collections, Epistolae saeculi XIII e regestis pontificum Romanorum selectae. (1216-1268) and Les Registres de Gregoire IX (1227/41). We describe the pipeline used to extract the text from the images of the printed pages and we make high level analysis of the corpus. After developing REVERINO we use it as a benchmark to test the ability of Large Language Models (LLMs) to generate the regestum of a given Latin text. We test 3 LLMs among the best performing ones, GPT-4o, Llama 3.1 70b and Llama 3.1 405b and find that GPT-4o is the best at generating text in Latin. Interestingly, we also find that for Llama models it can be beneficial to first generate a text in English and then translate it in Latin to write better regesta.

REVERINO: REgesta generation VERsus latIN summarizatiOn / Puccetti, G.; Righi, L.; Sabbatini, I.; Esuli, A.. - 3937:(2025). (Intervento presentato al convegno 21st Conference on Information and Research Science Connecting to Digital and Library Science, IRCDL 2025 tenutosi a ita nel 2025).

REVERINO: REgesta generation VERsus latIN summarizatiOn

Righi L.;
2025

Abstract

In this work we introduce the REVERINO dataset, a collection of 4533 pairs of Latin regesta with their respective full text medieval pontifical document extracted from two collections, Epistolae saeculi XIII e regestis pontificum Romanorum selectae. (1216-1268) and Les Registres de Gregoire IX (1227/41). We describe the pipeline used to extract the text from the images of the printed pages and we make high level analysis of the corpus. After developing REVERINO we use it as a benchmark to test the ability of Large Language Models (LLMs) to generate the regestum of a given Latin text. We test 3 LLMs among the best performing ones, GPT-4o, Llama 3.1 70b and Llama 3.1 405b and find that GPT-4o is the best at generating text in Latin. Interestingly, we also find that for Llama models it can be beneficial to first generate a text in English and then translate it in Latin to write better regesta.
2025
21st Conference on Information and Research Science Connecting to Digital and Library Science, IRCDL 2025
ita
2025
3937
Puccetti, G.; Righi, L.; Sabbatini, I.; Esuli, A.
REVERINO: REgesta generation VERsus latIN summarizatiOn / Puccetti, G.; Righi, L.; Sabbatini, I.; Esuli, A.. - 3937:(2025). (Intervento presentato al convegno 21st Conference on Information and Research Science Connecting to Digital and Library Science, IRCDL 2025 tenutosi a ita nel 2025).
File in questo prodotto:
File Dimensione Formato  
WP7_PAPER_regesti___ircdl.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1381609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact