Objectives: Large language models (LLMs) show promise in clinical decision-making, but comparative evaluations of their antibiotic prescribing accuracy are limited. This study assesses the performance of various LLMs in recommending antibiotic treatments across diverse clinical scenarios. Methods: Fourteen LLMs, including standard and premium versions of ChatGPT, Claude, Copilot, Gemini, Le Chat, Grok, Perplexity, and Pi.ai, were evaluated using 60 clinical cases with antibiograms covering 10 infection types. A standardized prompt was used for antibiotic recommendations focusing on drug choice, dosage, and treatment duration. Responses were anonymized and reviewed by a blinded expert panel assessing antibiotic appropriateness, dosage correctness, and duration adequacy. Results: A total of 840 responses were collected and analysed. ChatGPT-o1 demonstrated the highest accuracy in antibiotic prescriptions, with 71.7% (43/60) of its recommendations classified as correct and only one (1.7%) incorrect. Gemini and Claude 3 Opus had the lowest accuracy. Dosage correctness was highest for ChatGPT-o1 (96.7%, 58/60), followed by Perplexity Pro (90.0%, 54/60) and Claude 3.5 Sonnet (91.7%, 55/60). In treatment duration, Gemini provided the most appropriate recommendations (75.0%, 45/60), whereas Claude 3.5 Sonnet tended to over-prescribe duration. Performance declined with increasing case complexity, particularly for difficult-to-treat microorganisms. Discussion: : There is significant variability among LLMs in prescribing appropriate antibiotics, dosages, and treatment durations. ChatGPT-o1 outperformed other models, indicating the potential of advanced LLMs as decision-support tools in antibiotic prescribing. However, decreased accuracy in complex cases and inconsistencies among models highlight the need for careful validation before clinical utilization.
Comparing large language models for antibiotic prescribing in different clinical scenarios: which performs better? / De Vito, Andrea; Geremia, Nicholas; Bavaro, Davide Fiore; Seo, Susan K.; Laracy, Justin; Mazzitelli, Maria; Marino, Andrea; Maraolo, Alberto Enrico; Russo, Antonio; Colpani, Agnese; Bartoletti, Michele; Cattelan, Anna Maria; Mussini, Cristina; Parisi, Saverio Giuseppe; Vaira, Luigi Angelo; Nunnari, Giuseppe; Madeddu, Giordano. - In: CLINICAL MICROBIOLOGY AND INFECTION. - ISSN 1198-743X. - 31:8(2025), pp. 1336-1342. [10.1016/j.cmi.2025.03.002]
Comparing large language models for antibiotic prescribing in different clinical scenarios: which performs better?
Mussini, Cristina;
2025
Abstract
Objectives: Large language models (LLMs) show promise in clinical decision-making, but comparative evaluations of their antibiotic prescribing accuracy are limited. This study assesses the performance of various LLMs in recommending antibiotic treatments across diverse clinical scenarios. Methods: Fourteen LLMs, including standard and premium versions of ChatGPT, Claude, Copilot, Gemini, Le Chat, Grok, Perplexity, and Pi.ai, were evaluated using 60 clinical cases with antibiograms covering 10 infection types. A standardized prompt was used for antibiotic recommendations focusing on drug choice, dosage, and treatment duration. Responses were anonymized and reviewed by a blinded expert panel assessing antibiotic appropriateness, dosage correctness, and duration adequacy. Results: A total of 840 responses were collected and analysed. ChatGPT-o1 demonstrated the highest accuracy in antibiotic prescriptions, with 71.7% (43/60) of its recommendations classified as correct and only one (1.7%) incorrect. Gemini and Claude 3 Opus had the lowest accuracy. Dosage correctness was highest for ChatGPT-o1 (96.7%, 58/60), followed by Perplexity Pro (90.0%, 54/60) and Claude 3.5 Sonnet (91.7%, 55/60). In treatment duration, Gemini provided the most appropriate recommendations (75.0%, 45/60), whereas Claude 3.5 Sonnet tended to over-prescribe duration. Performance declined with increasing case complexity, particularly for difficult-to-treat microorganisms. Discussion: : There is significant variability among LLMs in prescribing appropriate antibiotics, dosages, and treatment durations. ChatGPT-o1 outperformed other models, indicating the potential of advanced LLMs as decision-support tools in antibiotic prescribing. However, decreased accuracy in complex cases and inconsistencies among models highlight the need for careful validation before clinical utilization.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S1198743X2500120X-main.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
459.27 kB
Formato
Adobe PDF
|
459.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




