Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand for innovative antimicrobial surfaces. This study assessed the effectiveness of a nanosized deposited SiOxCyHz coating approved for food contact on 3D-printed polyamide 12 (PA12) disk substrates, aiming at providing antimicrobial and anti-biofilm functionality to mechanical components and packaging material in the food supply chain. The coating was applied using plasma-enhanced chemical vapor deposition (PECVD) and characterized through Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. Coated PA12 samples exhibited significantly enhanced hydrophobicity, with an average water contact angle of 112.9◦, thus improving antibacterial performance by markedly reducing bacterial adhesion. Microbiological assays revealed a significant (p < 0.001) bactericidal activity (up to 4 logarithms after 4 h, ≥99.99%) against Gram-positive and Gram-negative bacteria, including notable foodborne pathogens such as L. monocytogenes, S. aureus, E. coli, and S. typhimurium. SiOxCyHz-coated PA12 surfaces exhibited strong antibacterial activity, representing a promising approach for coating additive-manufactured components and equipment for packaging production in the food and pharmaceutical supply chain able to enhance safety, extend product shelf life, and reduce reliance on chemical sanitizers
Investigation of Surface Properties and Antibacterial Activity of 3D-Printed Polyamide 12-Based Samples Coated by a Plasma SiOxCyHz Amorphous Thin Film Approved for Food Contact / Raphael Palucci Rosa, Mario Nicotra; Trovato, Valentina; Rosace, Giuseppe; Canton, Roberto; Rita Loschi, Anna; Rea, Stefano; Alagawany, Mahmoud; Sabia, Carla; Di Cerbo, Alessandro. - In: POLYMERS. - ISSN 2073-4360. - 17:(2025), pp. 1-20. [10.3390/polym17121678]
Investigation of Surface Properties and Antibacterial Activity of 3D-Printed Polyamide 12-Based Samples Coated by a Plasma SiOxCyHz Amorphous Thin Film Approved for Food Contact
Carla SabiaSupervision
;Alessandro Di Cerbo
2025
Abstract
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand for innovative antimicrobial surfaces. This study assessed the effectiveness of a nanosized deposited SiOxCyHz coating approved for food contact on 3D-printed polyamide 12 (PA12) disk substrates, aiming at providing antimicrobial and anti-biofilm functionality to mechanical components and packaging material in the food supply chain. The coating was applied using plasma-enhanced chemical vapor deposition (PECVD) and characterized through Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. Coated PA12 samples exhibited significantly enhanced hydrophobicity, with an average water contact angle of 112.9◦, thus improving antibacterial performance by markedly reducing bacterial adhesion. Microbiological assays revealed a significant (p < 0.001) bactericidal activity (up to 4 logarithms after 4 h, ≥99.99%) against Gram-positive and Gram-negative bacteria, including notable foodborne pathogens such as L. monocytogenes, S. aureus, E. coli, and S. typhimurium. SiOxCyHz-coated PA12 surfaces exhibited strong antibacterial activity, representing a promising approach for coating additive-manufactured components and equipment for packaging production in the food and pharmaceutical supply chain able to enhance safety, extend product shelf life, and reduce reliance on chemical sanitizersFile | Dimensione | Formato | |
---|---|---|---|
polymers-17-01678 2025.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
12.23 MB
Formato
Adobe PDF
|
12.23 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris