Using density functional theory, the adsorption properties of lamotrigine (6-(2,3-dichlorophenyl)1,2,4-triazine-3,5-diamine) (DTD) with CC, AlN and BN nanotubes are reported. Different configurations are selected for optimization. The study addresses the need for efficient drug carriers by evaluating nanotubes (CC, BN, AlN) for lamotrigine (DTD) delivery. Key findings include: PP2 (NH₂-end) has the highest adsorption energy (–190.78 kJ/mol for AlN); SERS effects confirm DTD-nanotube binding, and MD shows stability in water/methanol. In all cases, DTD at the end of the nanotubes give maximum adsorption energy. For all complexes, adsorption energy varies as AlN-DTDPP2 (-190.78) > BNPP2 (-185.09) > CCPP2 (-14.86). The increase in polarizability suggests SERS effect is formed due to adsorption of DTD with nanotubes and the vibrational modes which are absent in the DTD is present in the Raman spectra of complexes. For different attempt frequencies the recovery times are found and very low for all CC-DTD, AlN-DTDPP1 and BN-DTDPP3. For AlN/BN-DTDPP2, the recovery times are very high and the sensing effects are also presented. High docking scores indicate the drug carrier activity of nanotubes. MD simulations are carried out for the complexes giving higher adsorption energy in water and methanol.

Unlocking the potential of Lamotrigine in nanotubes: DFT, MD simulations in different solvents, sensing properties and drug enhancer / Al-Otaibi, J. S.; Mary, Y. S.; Gamberini, M. C.. - In: SURFACE SCIENCE. - ISSN 0039-6028. - 761:(2025), pp. N/A-N/A. [10.1016/j.susc.2025.122789]

Unlocking the potential of Lamotrigine in nanotubes: DFT, MD simulations in different solvents, sensing properties and drug enhancer

Gamberini M. C.
2025

Abstract

Using density functional theory, the adsorption properties of lamotrigine (6-(2,3-dichlorophenyl)1,2,4-triazine-3,5-diamine) (DTD) with CC, AlN and BN nanotubes are reported. Different configurations are selected for optimization. The study addresses the need for efficient drug carriers by evaluating nanotubes (CC, BN, AlN) for lamotrigine (DTD) delivery. Key findings include: PP2 (NH₂-end) has the highest adsorption energy (–190.78 kJ/mol for AlN); SERS effects confirm DTD-nanotube binding, and MD shows stability in water/methanol. In all cases, DTD at the end of the nanotubes give maximum adsorption energy. For all complexes, adsorption energy varies as AlN-DTDPP2 (-190.78) > BNPP2 (-185.09) > CCPP2 (-14.86). The increase in polarizability suggests SERS effect is formed due to adsorption of DTD with nanotubes and the vibrational modes which are absent in the DTD is present in the Raman spectra of complexes. For different attempt frequencies the recovery times are found and very low for all CC-DTD, AlN-DTDPP1 and BN-DTDPP3. For AlN/BN-DTDPP2, the recovery times are very high and the sensing effects are also presented. High docking scores indicate the drug carrier activity of nanotubes. MD simulations are carried out for the complexes giving higher adsorption energy in water and methanol.
2025
761
N/A
N/A
Unlocking the potential of Lamotrigine in nanotubes: DFT, MD simulations in different solvents, sensing properties and drug enhancer / Al-Otaibi, J. S.; Mary, Y. S.; Gamberini, M. C.. - In: SURFACE SCIENCE. - ISSN 0039-6028. - 761:(2025), pp. N/A-N/A. [10.1016/j.susc.2025.122789]
Al-Otaibi, J. S.; Mary, Y. S.; Gamberini, M. C.
File in questo prodotto:
File Dimensione Formato  
SURFACE SC 2025.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] closed
Dimensione 7.67 MB
Formato Adobe PDF
7.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1380617
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact