In this paper an enhanced self-powered ultra-low input voltage DC-DC converter is presented. The circuit is intended to be used as cold startup circuit where extremely low input voltage sources are available. For example, this could be the case of energy harvesting circuits targeting ThermoElectric Generators (TEGs) operating with a very low thermal gradient (i.e. lower than 1°C). An input voltage of only 11mV is enough for a cold startup of the converter and to obtain a 3.3 V output voltage in no load conditions. Experimental results shown as an input voltage of 13 mV is enough to allow the charge of two fully discharged 1 mF capacitor and simultaneously deliver power to a resistive load emulating devices running low duty cycle applications (e.g. low-power wireless sensor nodes). Measurements carried out in a 11÷40 mV input voltage range shown end-to-end conversion efficiencies in the range 18÷22% with output power in the range 15÷300 µW, depending on input voltage and connected load. As further distinguish feature, the proposed solution has been realized using only discrete commercial components.

A 11 mV Input Boost Converter for Low Thermal Gradients Energy Harvesting Applications / Bertacchini, A.; Lasagni, M.. - (2024), pp. 1-6. ( 50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024 Chicago, IL, USA 3-6/11/2024) [10.1109/IECON55916.2024.10905425].

A 11 mV Input Boost Converter for Low Thermal Gradients Energy Harvesting Applications

Bertacchini A.;
2024

Abstract

In this paper an enhanced self-powered ultra-low input voltage DC-DC converter is presented. The circuit is intended to be used as cold startup circuit where extremely low input voltage sources are available. For example, this could be the case of energy harvesting circuits targeting ThermoElectric Generators (TEGs) operating with a very low thermal gradient (i.e. lower than 1°C). An input voltage of only 11mV is enough for a cold startup of the converter and to obtain a 3.3 V output voltage in no load conditions. Experimental results shown as an input voltage of 13 mV is enough to allow the charge of two fully discharged 1 mF capacitor and simultaneously deliver power to a resistive load emulating devices running low duty cycle applications (e.g. low-power wireless sensor nodes). Measurements carried out in a 11÷40 mV input voltage range shown end-to-end conversion efficiencies in the range 18÷22% with output power in the range 15÷300 µW, depending on input voltage and connected load. As further distinguish feature, the proposed solution has been realized using only discrete commercial components.
2024
50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024
Chicago, IL, USA
3-6/11/2024
1
6
Bertacchini, A.; Lasagni, M.
A 11 mV Input Boost Converter for Low Thermal Gradients Energy Harvesting Applications / Bertacchini, A.; Lasagni, M.. - (2024), pp. 1-6. ( 50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024 Chicago, IL, USA 3-6/11/2024) [10.1109/IECON55916.2024.10905425].
File in questo prodotto:
File Dimensione Formato  
IECON 24.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 759.69 kB
Formato Adobe PDF
759.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IECON24_CameraReady.pdf

Accesso riservato

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 724.46 kB
Formato Adobe PDF
724.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1380550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact