In gear transmissions, vibration causes noise and malfunction. In actual applications, misalignments contribute to intensifying the destructive effect of vibrations. In this paper, the nonlinear dynamics of a spiral bevel gear pair, with small helix angle, considering different misalignments, are deeply investigated. Axial misalignment, radial misalignment, and the combination of these two types are considered in this study. The governing equation is numerically solved through an implicit Runge-Kutta scheme. Since the main goal of this study is the analysis of the dynamic scenario, the mesh stiffness of the gear pair is obtained from the literature. The dynamical system is nonlinear and time-varying; it is analyzed through time responses, phase portraits, Poincare maps, and bifurcation diagrams. Results show that, among the considered three cases with different types of misalignments, the spiral bevel gear with axial misalignment is the worst destructive case; aperiodic, subharmonic, and multiperiod responses are observable for this case. It is interesting that the chaotic responses for the case, having both types of misalignments, are less likely for the case with axial misalignment, only.
Spiral Bevel Gears Nonlinear Vibration Having Radial and Axial Misalignments Effects / Molaie, M.; Samani, F. S.; Pellicano, F.. - In: VIBRATION. - ISSN 2571-631X. - 4:3(2021), pp. 666-678. [10.3390/vibration4030037]
Spiral Bevel Gears Nonlinear Vibration Having Radial and Axial Misalignments Effects
Molaie M.;Pellicano F.
2021
Abstract
In gear transmissions, vibration causes noise and malfunction. In actual applications, misalignments contribute to intensifying the destructive effect of vibrations. In this paper, the nonlinear dynamics of a spiral bevel gear pair, with small helix angle, considering different misalignments, are deeply investigated. Axial misalignment, radial misalignment, and the combination of these two types are considered in this study. The governing equation is numerically solved through an implicit Runge-Kutta scheme. Since the main goal of this study is the analysis of the dynamic scenario, the mesh stiffness of the gear pair is obtained from the literature. The dynamical system is nonlinear and time-varying; it is analyzed through time responses, phase portraits, Poincare maps, and bifurcation diagrams. Results show that, among the considered three cases with different types of misalignments, the spiral bevel gear with axial misalignment is the worst destructive case; aperiodic, subharmonic, and multiperiod responses are observable for this case. It is interesting that the chaotic responses for the case, having both types of misalignments, are less likely for the case with axial misalignment, only.File | Dimensione | Formato | |
---|---|---|---|
vibration-04-00037.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
7.41 MB
Formato
Adobe PDF
|
7.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris