The dynamic response of light bridges to moving loads presents significant challenges in controlling vibrations that can impact on the structural integrity and the user comfort. This study investigates the effectiveness of nonlinear semi-active absorbers in mitigating these vibrations on light bridges that are particularly susceptible to human-induced vibrations, due to their inherent low damping and flexibility, especially under near-resonance conditions. Traditional passive vibration control methods, such as dynamic vibration absorbers (DVAs), may not be entirely adequate for mitigating vibrations, as they require adjustments in damping and stiffness when operating conditions change over time. Therefore, suitable strategies are needed to dynamically adapt DVA parameters and ensure optimal performance. This paper explores the effectiveness of linear and nonlinear DVAs in reducing vertical vibrations of lightweight beams subjected to moving loads. Using the Bubnov-Galerkin method, the governing partial differential equations are reduced to a set of ordinary differential equations and a novel nonlinear DVA with a variable damping dashpot is investigated, showing better performances compared to traditional constant-parameter DVAs. The nonlinear viscous damping device enables real-time adjustments, making the DVA semi-active and more effective. A footbridge case study demonstrates significant vibration reductions using optimized nonlinear DVAs for lightweight bridges, showing broader frequency effectiveness than linear ones. The quadratic nonlinear DVA is the most efficient, achieving a 92% deflection reduction in the 1.5-2.5 Hz range, and under running and jumping reduces deflection by 42%.
Vibration Control of Light Bridges Under Moving Loads Using Nonlinear Semi-Active Absorbers / Saber, H.; Samani, F. S.; Pellicano, F.; Molaie, M.; Zippo, A.. - In: MATHEMATICAL AND COMPUTATIONAL APPLICATIONS. - ISSN 2297-8747. - 30:1(2025), pp. 1-1. [10.3390/mca30010019]
Vibration Control of Light Bridges Under Moving Loads Using Nonlinear Semi-Active Absorbers
Saber H.;Pellicano F.;Molaie M.;Zippo A.
2025
Abstract
The dynamic response of light bridges to moving loads presents significant challenges in controlling vibrations that can impact on the structural integrity and the user comfort. This study investigates the effectiveness of nonlinear semi-active absorbers in mitigating these vibrations on light bridges that are particularly susceptible to human-induced vibrations, due to their inherent low damping and flexibility, especially under near-resonance conditions. Traditional passive vibration control methods, such as dynamic vibration absorbers (DVAs), may not be entirely adequate for mitigating vibrations, as they require adjustments in damping and stiffness when operating conditions change over time. Therefore, suitable strategies are needed to dynamically adapt DVA parameters and ensure optimal performance. This paper explores the effectiveness of linear and nonlinear DVAs in reducing vertical vibrations of lightweight beams subjected to moving loads. Using the Bubnov-Galerkin method, the governing partial differential equations are reduced to a set of ordinary differential equations and a novel nonlinear DVA with a variable damping dashpot is investigated, showing better performances compared to traditional constant-parameter DVAs. The nonlinear viscous damping device enables real-time adjustments, making the DVA semi-active and more effective. A footbridge case study demonstrates significant vibration reductions using optimized nonlinear DVAs for lightweight bridges, showing broader frequency effectiveness than linear ones. The quadratic nonlinear DVA is the most efficient, achieving a 92% deflection reduction in the 1.5-2.5 Hz range, and under running and jumping reduces deflection by 42%.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_Vibration Control of Light Bridges Under Moving Loads Using Nonlinear Semi-Active Absorbers.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
3.96 MB
Formato
Adobe PDF
|
3.96 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




