Photocatalysis is proposed as an environmentally friendly technology that exploits solar light for environmental purification. While its effect on treated effluent quality is indeed positive, studies on its overall environmental profitability generally disregard the fact that photocatalytic materials may themselves generate pollution in their production, use, and end-of-life phases. This work addresses two distinct methods for titanium dioxide (TiO2) photocatalytic coatings preparation, that is, chemical –sol–gel, associated with spray coating– and electrochemical –anodic oxidation, which generates the oxide directly from a titanium substrate. Oxides are tested in the photocatalytic decomposition of tetracycline, an antibiotic commonly found in water. Both distilled and tap water are used as matrices. Coatings are tested multiple times to simulate real operating conditions, until photocatalytic activity is compromised. Life Cycle Assessment (LCA) is then used to quantify and compare the potential environmental impacts associated with the two different TiO2 production strategies. Eventually, the assessment is completed by considering full photocatalyst regeneration: while for Sol–Gel this only implies cleaning and re-deposition, anodizing required oxide detachment, and subsequent re-anodization. The process of oxide removal and re-anodizing, although invasive and titanium consuming, is repeated 20 times without significant loss of photocatalytic efficiency, indicating robustness and suitability for technology transfer.
Toward Sustainable Photocatalysis: Addressing Deactivation and Environmental Impact of Anodized and Sol–Gel Photocatalysts / Diamanti, Maria Vittoria; Shinnur, Manjunath V.; Pedeferri, Mariapia; Ferrari, Anna Maria; Rosa, Roberto; Meroni, Daniela. - In: ADVANCED SUSTAINABLE SYSTEMS. - ISSN 2366-7486. - 9:5(2025), pp. 2401017-2401017. [10.1002/adsu.202401017]
Toward Sustainable Photocatalysis: Addressing Deactivation and Environmental Impact of Anodized and Sol–Gel Photocatalysts
Pedeferri, MariaPia;Ferrari, Anna Maria;Rosa, Roberto
;
2025
Abstract
Photocatalysis is proposed as an environmentally friendly technology that exploits solar light for environmental purification. While its effect on treated effluent quality is indeed positive, studies on its overall environmental profitability generally disregard the fact that photocatalytic materials may themselves generate pollution in their production, use, and end-of-life phases. This work addresses two distinct methods for titanium dioxide (TiO2) photocatalytic coatings preparation, that is, chemical –sol–gel, associated with spray coating– and electrochemical –anodic oxidation, which generates the oxide directly from a titanium substrate. Oxides are tested in the photocatalytic decomposition of tetracycline, an antibiotic commonly found in water. Both distilled and tap water are used as matrices. Coatings are tested multiple times to simulate real operating conditions, until photocatalytic activity is compromised. Life Cycle Assessment (LCA) is then used to quantify and compare the potential environmental impacts associated with the two different TiO2 production strategies. Eventually, the assessment is completed by considering full photocatalyst regeneration: while for Sol–Gel this only implies cleaning and re-deposition, anodizing required oxide detachment, and subsequent re-anodization. The process of oxide removal and re-anodizing, although invasive and titanium consuming, is repeated 20 times without significant loss of photocatalytic efficiency, indicating robustness and suitability for technology transfer.| File | Dimensione | Formato | |
|---|---|---|---|
|
Advanced Sustainable Systems - 2025 - Diamanti - Toward Sustainable Photocatalysis Addressing Deactivation and.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




