Transparent Conductors (TCs) exhibit optical transparency and electron conductivity, and are essential for many opto-electronic and photo-voltaic devices. The most common TCs are electron-doped oxides, which are limited in the choice of possible dopants, as transitions metals most often are not suitable, in view of their tendency to form strong bond with oxygen. Non-oxides TCs have the potential of extending the class of materials to the magnetic realm, bypass technological bottlenecks, and bring TCs to the field of spintronics. Here we propose new functional materials that combine transparency and conductivity with magnetic spin polarization that can be used for spintronic applications, such as spin filters. By using high-throughput first-principles techniques, we identified a large number of potential TCs, including non-oxides materials. Our results indicate that proper doping with transition metals introduces a finite magnetization that can provide spin filtering up to 90% in the electrical conductivity, still maintaining a transparency greater than 90%.
Magnetic transparent conductors for spintronic applications / D'Amico, Pino; Catellani, Alessandra; Ruini, Alice; Curtarolo, Stefano; Fornari, Marco; Buongiorno Nardelli, Marco; Calzolari, Arrigo. - In: ACTA MATERIALIA. - ISSN 1359-6454. - 289:(2025), pp. 120850-1-120850-10. [10.1016/j.actamat.2025.120850]
Magnetic transparent conductors for spintronic applications
D'Amico, Pino;Ruini, Alice;Calzolari, Arrigo
2025
Abstract
Transparent Conductors (TCs) exhibit optical transparency and electron conductivity, and are essential for many opto-electronic and photo-voltaic devices. The most common TCs are electron-doped oxides, which are limited in the choice of possible dopants, as transitions metals most often are not suitable, in view of their tendency to form strong bond with oxygen. Non-oxides TCs have the potential of extending the class of materials to the magnetic realm, bypass technological bottlenecks, and bring TCs to the field of spintronics. Here we propose new functional materials that combine transparency and conductivity with magnetic spin polarization that can be used for spintronic applications, such as spin filters. By using high-throughput first-principles techniques, we identified a large number of potential TCs, including non-oxides materials. Our results indicate that proper doping with transition metals introduces a finite magnetization that can provide spin filtering up to 90% in the electrical conductivity, still maintaining a transparency greater than 90%.File | Dimensione | Formato | |
---|---|---|---|
acta-materialia_2025.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris