This thesis focuses on the study and development of an optoelectronic sensor for monitoring uremic toxins, with the aim of exploring ways to reduce patient hospitalization in the context of Point of Care (PoC) systems. Hemodialysis, in particular, is a highly debilitating treatment for patients, as it requires multiple sessions per week in a hospital setting, each lasting several hours. Finding a way to apply the PoC approach to such treatments would be highly advantageous, allowing patients to undergo dialysis in a more flexible and personalized manner, reducing the need for frequent hospital visits and improving their quality of life. Uremic toxins, including protein-bound compounds (e.g., albumin) and low-to-medium molecular weight molecules, significantly affect the effectiveness of dialysis treatments. Some key toxins of interest include p-cresol, indoxyl sulfate, β2-microglobulin, and uric acid, each playing a crucial role in the success of hemodialysis treatment and influencing long-term outcomes in patients with chronic kidney disease. Uric acid is particularly important to detect, as it is recognized as one of the major uremic toxins present in spent dialysate. It contributes significantly to absorption measurements but has a negligible impact on fluorescence, making it essential to design sensors capable of detecting it through absorption techniques. In contrast, other molecules such as albumin and p-cresol, although less studied in the scientific literature, provide a significant contribution to both absorption and fluorescence. These compounds absorb light at different wavelengths and are essential to monitor as they could also indicate potential malfunctions in dialysis filters. Also, they emit at different wavelengths, which allows their contributions to be isolated using specific excitation and emission filters. This enables more accurate detection, improving the overall reliability of the dialysis process. Currently, hemodialysis treatment is primarily based on the calculation of a coefficient, Kt/V, derived from urea clearance, as well as pre- and post-treatment blood tests. The use of sensors like the one proposed could revolutionize the process by allowing the personalization of treatment duration and modality based on real-time toxin levels. The ability to dynamically adapt dialysis to the specific needs of each patient would represent a significant advancement in improving therapy. The research focuses on the design and development of the sensor previously introduced, which, as mentioned, utilizes absorption and fluorescence techniques to enable continuous monitoring of certain toxins, e.g., albumin, p-cresol, and uric acid. This work contributes to the future development of personalized dialysis systems, enabling toxin monitoring in home-care settings. By providing personalized information on specific uremic toxins, it opens new possibilities for dynamically adjusting treatment parameters, improving the precision and effectiveness of hemodialysis therapies, and reducing hospital visits.
Questa tesi si concentra sullo studio e sviluppo di un sensore optoelettronico per il monitoraggio di tossine uremiche, con l’obiettivo di esplorare un modo per ridurre l’ospedalizzazione dei pazienti nell'ottica di sistemi Point of Care (PoC). L’emodialisi, in particolare, è una terapia altamente debilitante per i pazienti, poiché richiede sessioni multiple a settimana in ambiente ospedaliero, ciascuna della durata di diverse ore. Trovare un modo per applicare l’approccio PoC in tali trattamenti sarebbe molto vantaggioso, consentendo ai pazienti di sottoporsi alla dialisi in modo più flessibile e personalizzato, riducendo la necessità di frequenti visite ospedaliere e migliorando la loro qualità di vita. Le tossine uremiche, tra cui composti legati alle proteine (e.g. albumina) e molecole a basso-medio peso molecolare, influiscono significativamente sull’efficacia dei trattamenti di dialisi. Alcune tossine di interesse includono p-cresolo, indoxil solfato, β2-microglobuline ed acido urico, ciascuna delle quali gioca un ruolo cruciale nel successo del trattamento di emodialisi e influisce sugli esiti a lungo termine nei pazienti con malattie renali croniche. L'acido urico è particolarmente importante da rilevare, poiché è riconosciuto come una delle principali tossine uremiche presenti nel dializzato esausto. Esso contribuisce in modo significativo alle misurazioni di assorbimento, ma ha un impatto trascurabile in fluorescenza, rendendo essenziale la progettazione di sensori in grado di rilevarne la presenza tramite tecniche di assorbimento. Al contrario, altre molecole come l'albumina e il p-cresolo, sebbene meno studiate nella letteratura scientifica, forniscono un contributo notevole sia in termini di assorbimento che di fluorescenza. Questi composti assorbono la luce a diverse lunghezze d'onda e sono fondamentali da monitorare poiché potrebbero anche indicare eventuali malfunzionamenti nei filtri dializzanti. Albumina e p-cresolo assorbono ed emettono a diverse lunghezze d’onda, il che permette di isolarne i contributi utilizzando specifici filtri di eccitazione ed emissione. In questo modo, la loro rilevazione può risultare più accurata, migliorando l’affidabilità complessiva del processo di dialisi. Attualmente, il trattamento emodialitico si basa principalmente sul calcolo di un coefficiente, Kt/V, derivato dalla clearance dell'urea, oltre che su esami del sangue pre- e post-trattamento. L'uso di sensori come quello proposto potrebbe rivoluzionare il processo, consentendo di personalizzare la durata e la modalità del trattamento emodialitico in base ai livelli di tossine rilevati in tempo reale. La possibilità di adattare dinamicamente la dialisi alle esigenze specifiche di ciascun paziente rappresenterebbe un progresso significativo nel miglioramento della terapia. La ricerca si concentra sulla progettazione e sviluppo del sensore precedentemente introdotto che, come già accennato utilizza tecniche di assorbimento e fluorescenza per consentire il monitoraggio continuo di alcune queste tossine, e.g. albumina, p-cresolo, acido urico. Questo lavoro contribuisce allo sviluppo futuro di sistemi di dialisi personalizzati, abilitando il monitoraggio delle tossine in contesti di assistenza domiciliare. Offrendo informazioni personalizzate sulle specifiche tossine uremiche, apre nuove possibilità per regolare dinamicamente i parametri del trattamento, migliorando la precisione e l’efficacia delle terapie emodialitiche e riducendo le visite ospedaliere.
Progressi nei Sensori Biomedicali: Studi Teorici e Sperimentali su Tecnologie Optoelettroniche e Tessili / Valentina Di Pinto , 2025 Apr 03. 37. ciclo, Anno Accademico 2023/2024.
Progressi nei Sensori Biomedicali: Studi Teorici e Sperimentali su Tecnologie Optoelettroniche e Tessili
DI PINTO, VALENTINA
2025
Abstract
This thesis focuses on the study and development of an optoelectronic sensor for monitoring uremic toxins, with the aim of exploring ways to reduce patient hospitalization in the context of Point of Care (PoC) systems. Hemodialysis, in particular, is a highly debilitating treatment for patients, as it requires multiple sessions per week in a hospital setting, each lasting several hours. Finding a way to apply the PoC approach to such treatments would be highly advantageous, allowing patients to undergo dialysis in a more flexible and personalized manner, reducing the need for frequent hospital visits and improving their quality of life. Uremic toxins, including protein-bound compounds (e.g., albumin) and low-to-medium molecular weight molecules, significantly affect the effectiveness of dialysis treatments. Some key toxins of interest include p-cresol, indoxyl sulfate, β2-microglobulin, and uric acid, each playing a crucial role in the success of hemodialysis treatment and influencing long-term outcomes in patients with chronic kidney disease. Uric acid is particularly important to detect, as it is recognized as one of the major uremic toxins present in spent dialysate. It contributes significantly to absorption measurements but has a negligible impact on fluorescence, making it essential to design sensors capable of detecting it through absorption techniques. In contrast, other molecules such as albumin and p-cresol, although less studied in the scientific literature, provide a significant contribution to both absorption and fluorescence. These compounds absorb light at different wavelengths and are essential to monitor as they could also indicate potential malfunctions in dialysis filters. Also, they emit at different wavelengths, which allows their contributions to be isolated using specific excitation and emission filters. This enables more accurate detection, improving the overall reliability of the dialysis process. Currently, hemodialysis treatment is primarily based on the calculation of a coefficient, Kt/V, derived from urea clearance, as well as pre- and post-treatment blood tests. The use of sensors like the one proposed could revolutionize the process by allowing the personalization of treatment duration and modality based on real-time toxin levels. The ability to dynamically adapt dialysis to the specific needs of each patient would represent a significant advancement in improving therapy. The research focuses on the design and development of the sensor previously introduced, which, as mentioned, utilizes absorption and fluorescence techniques to enable continuous monitoring of certain toxins, e.g., albumin, p-cresol, and uric acid. This work contributes to the future development of personalized dialysis systems, enabling toxin monitoring in home-care settings. By providing personalized information on specific uremic toxins, it opens new possibilities for dynamically adjusting treatment parameters, improving the precision and effectiveness of hemodialysis therapies, and reducing hospital visits.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_FINALVERSION.pdf
embargo fino al 02/04/2028
Descrizione: Tesi Definitiva Di Pinto Valentina
Tipologia:
Tesi di dottorato
Dimensione
16.32 MB
Formato
Adobe PDF
|
16.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris