Taste buds, the end organs of taste, consist of a diverse population of sensory cells that is constantly renewed. Cell differentiation begins with Type IV basal cells, which are ovoid elements located inside the taste bud near its base. These cells are postmitotic precursors that give rise to all other cell types, including glial-like cells (Type I cells) and chemoreceptors (Type II and Type III cells). Despite their critical role in cell turnover, Type IV basal cells are relatively unknown in terms of functional features. Here, we used Lucifer yellow labeling and patch-clamp technique to investigate their electrophysiological properties in the rat fungiform taste buds. All Type IV basal cells showed voltage-gated sodium currents (INa), albeit at a far lower density (17 pA/pF) than chemoreceptors (444 pA/pF), which fire action potentials during sensory transduction. Furthermore, they lacked calcium homeostasis modulator currents, which are required for neurotransmitter release by some chemoreceptor types. Amiloride-sensitive epithelial sodium channel (ENaC) was found to be only present in a subset of Type IV basal cells. Interestingly, Type IV basal cells shared some membrane features with glial-like cells, such as high cell capacitance and low INa density; however, input resistance was greater in Type IV basal cells than in glial-like cells. Thus, although Type IV basal cells may eventually differentiate into distinct cell lineages, our findings indicate that they are quite homogeneous in terms of the electrophysiological characteristics, with the exception of functional ENaCs, which appear to be only expressed in one subset.

Functional characterization of Type IV basal cells in rat fungiform taste buds / Bigiani, Albertino; Tirindelli, Roberto; Rhyu, Meera; Mapelli, Jonathan. - In: CHEMICAL SENSES. - ISSN 0379-864X. - 50:(2025), pp. 1-15. [10.1093/chemse/bjaf005]

Functional characterization of Type IV basal cells in rat fungiform taste buds

Bigiani, Albertino
;
Tirindelli, Roberto;Mapelli, Jonathan
2025

Abstract

Taste buds, the end organs of taste, consist of a diverse population of sensory cells that is constantly renewed. Cell differentiation begins with Type IV basal cells, which are ovoid elements located inside the taste bud near its base. These cells are postmitotic precursors that give rise to all other cell types, including glial-like cells (Type I cells) and chemoreceptors (Type II and Type III cells). Despite their critical role in cell turnover, Type IV basal cells are relatively unknown in terms of functional features. Here, we used Lucifer yellow labeling and patch-clamp technique to investigate their electrophysiological properties in the rat fungiform taste buds. All Type IV basal cells showed voltage-gated sodium currents (INa), albeit at a far lower density (17 pA/pF) than chemoreceptors (444 pA/pF), which fire action potentials during sensory transduction. Furthermore, they lacked calcium homeostasis modulator currents, which are required for neurotransmitter release by some chemoreceptor types. Amiloride-sensitive epithelial sodium channel (ENaC) was found to be only present in a subset of Type IV basal cells. Interestingly, Type IV basal cells shared some membrane features with glial-like cells, such as high cell capacitance and low INa density; however, input resistance was greater in Type IV basal cells than in glial-like cells. Thus, although Type IV basal cells may eventually differentiate into distinct cell lineages, our findings indicate that they are quite homogeneous in terms of the electrophysiological characteristics, with the exception of functional ENaCs, which appear to be only expressed in one subset.
2025
50
1
15
Functional characterization of Type IV basal cells in rat fungiform taste buds / Bigiani, Albertino; Tirindelli, Roberto; Rhyu, Meera; Mapelli, Jonathan. - In: CHEMICAL SENSES. - ISSN 0379-864X. - 50:(2025), pp. 1-15. [10.1093/chemse/bjaf005]
Bigiani, Albertino; Tirindelli, Roberto; Rhyu, Meera; Mapelli, Jonathan
File in questo prodotto:
File Dimensione Formato  
2025 Chem Senses.pdf

embargo fino al 01/03/2026

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1375748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact