Argument relation classification (ARC) identifies supportive, contrasting and neutral relations between argumentative units.The current approaches rely on transformer architectures which have proven to be more effective than traditional methods based on hand-crafted linguistic features.In this paper, we introduce DISARM, which advances the state of the art with a training procedure combining multi-task and adversarial learning strategies.By jointly solving the ARC and discourse marker detection tasks and aligning their embedding spaces into a unified latent space, DISARM outperforms the accuracy of existing approaches.

Argument Relation Classification through Discourse Markers and Adversarial Training / Contalbo, M. L.; Guerra, F.; Paganelli, M.. - (2024), pp. 18949-18954. ( 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 usa 2024) [10.18653/v1/2024.emnlp-main.1054].

Argument Relation Classification through Discourse Markers and Adversarial Training

Contalbo M. L.;Guerra F.;Paganelli M.
2024

Abstract

Argument relation classification (ARC) identifies supportive, contrasting and neutral relations between argumentative units.The current approaches rely on transformer architectures which have proven to be more effective than traditional methods based on hand-crafted linguistic features.In this paper, we introduce DISARM, which advances the state of the art with a training procedure combining multi-task and adversarial learning strategies.By jointly solving the ARC and discourse marker detection tasks and aligning their embedding spaces into a unified latent space, DISARM outperforms the accuracy of existing approaches.
2024
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
usa
2024
18949
18954
Contalbo, M. L.; Guerra, F.; Paganelli, M.
Argument Relation Classification through Discourse Markers and Adversarial Training / Contalbo, M. L.; Guerra, F.; Paganelli, M.. - (2024), pp. 18949-18954. ( 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 usa 2024) [10.18653/v1/2024.emnlp-main.1054].
File in questo prodotto:
File Dimensione Formato  
Argument Relation Classification through Discourse Markers and Adversarial Training.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 462.71 kB
Formato Adobe PDF
462.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1375731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact