We study the Cahn-Hilliard equation with non-degenerate concentration-dependent mobility and logarithmic potential in two dimensions. We show that any weak solution is unique, exhibits propagation of uniform-in-time regularity, and stabilizes towards an equilibrium state of the Ginzburg-Landau free energy for large times. These results improve the state of the art dating back to a work by Barrett and Blowey. Our analysis relies on the combination of enhanced energy estimates, elliptic regularity theory and tools in critical Sobolev spaces.

New results for the Cahn-Hilliard equation with non-degenerate mobility: well-posedness and longtime behavior / Conti, M.; Galimberti, P.; Gatti, S.; Giorgini, A.. - (2025). [10.1007/s00526-025-02933-7]

New results for the Cahn-Hilliard equation with non-degenerate mobility: well-posedness and longtime behavior

Gatti S.;
2025

Abstract

We study the Cahn-Hilliard equation with non-degenerate concentration-dependent mobility and logarithmic potential in two dimensions. We show that any weak solution is unique, exhibits propagation of uniform-in-time regularity, and stabilizes towards an equilibrium state of the Ginzburg-Landau free energy for large times. These results improve the state of the art dating back to a work by Barrett and Blowey. Our analysis relies on the combination of enhanced energy estimates, elliptic regularity theory and tools in critical Sobolev spaces.
2025
SPRINGER HEIDELBERG
Conti, M.; Galimberti, P.; Gatti, S.; Giorgini, A.
File in questo prodotto:
File Dimensione Formato  
CVPDE2025.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 597.23 kB
Formato Adobe PDF
597.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1375248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact