We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on R × R^d × R^d, with respect to which the operators considered are invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
Intrinsic Hölder spaces for fractional kinetic operators / Manfredini, Maria; Pagliarani, Stefano; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 25:(2025), pp. 1-22. [10.1007/s00028-025-01062-0]
Intrinsic Hölder spaces for fractional kinetic operators
Manfredini, MariaMembro del Collaboration Group
;Pagliarani, StefanoMembro del Collaboration Group
;Polidoro, Sergio
Membro del Collaboration Group
2025
Abstract
We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on R × R^d × R^d, with respect to which the operators considered are invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.File | Dimensione | Formato | |
---|---|---|---|
Manfredini_Pagliarani_Polidoro-JEE-2025.pdf
Open access
Descrizione: Manfredini_Pagilariani_Polidoro-JEE-2025
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
483.69 kB
Formato
Adobe PDF
|
483.69 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris