We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on R × R^d × R^d, with respect to which the operators considered are invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.

Intrinsic Hölder spaces for fractional kinetic operators / Manfredini, Maria; Pagliarani, Stefano; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 25:(2025), pp. 1-22. [10.1007/s00028-025-01062-0]

Intrinsic Hölder spaces for fractional kinetic operators

Manfredini, Maria
Membro del Collaboration Group
;
Pagliarani, Stefano
Membro del Collaboration Group
;
Polidoro, Sergio
Membro del Collaboration Group
2025

Abstract

We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure on R × R^d × R^d, with respect to which the operators considered are invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
2025
8-mar-2025
25
1
22
Intrinsic Hölder spaces for fractional kinetic operators / Manfredini, Maria; Pagliarani, Stefano; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 25:(2025), pp. 1-22. [10.1007/s00028-025-01062-0]
Manfredini, Maria; Pagliarani, Stefano; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
Manfredini_Pagliarani_Polidoro-JEE-2025.pdf

Open access

Descrizione: Manfredini_Pagilariani_Polidoro-JEE-2025
Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 483.69 kB
Formato Adobe PDF
483.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1374009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact