The capabilities of Computational Fluid Dynamics (CFD) coupled with detailed chemistry simulations are examined in both steady jet diffusion flames and in an internal combustion engine case fuelled with hydrogen. Different approaches to turbulence-chemistry interaction such as the “Laminar Flame Concept” the “Eddy Dissipation Concept” and the “Turbulent Flame Speed Closure” are considered and tested. The results are compared with the experimental data available. Concerning the jet diffusion flames, the combustion processes of hydrogen, methane and one of their fuel blends are investigated on two burner geometries. Different sensitivities (i.e. mesh, turbulence model, turbulent Schmidt number, chemical mechanism) are performed. The study demonstrates that despite the burner geometry considered and the chemical composition of the fuel, the Complex Chemistry with “Eddy Dissipation Concept” is the model that better describes the behaviour of the turbulent flames. On the other hand, the “Laminar Flame Concept” sub-model is characterized by an higher fuel consumption rate, which causes an overestimation of the temperature peak. As for the in-cylinder unsteady simulations, the hydrogen combustion process is better described by the “Turbulent Flame Speed Closure” sub-model, which, unlike the other two, requires the specification of both laminar and turbulent flame speed. Despite different variations being considered, the “Laminar Flame Concept” adoption leads to an unphysically high burning rate, while the Eddy Dissipation Concept sub-model is characterized by an underestimation of the apparent heat release rate, and thus of the pressure peak inside the combustion chamber.

Hydrogen, methane and one of their fuel blends combustion: CFD analysis and numerical-experimental comparisons of fixed and mobile applications / Madia, M.; Cicalese, G.; Dalseno, L.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 2648:1(2023). (Intervento presentato al convegno 78th Associazione Termotecnica Italiana Annual Congress on Energy Transition: Research and Innovation for Industry, Communities and the Territory, ATI 2023 tenutosi a ita nel 2023) [10.1088/1742-6596/2648/1/012080].

Hydrogen, methane and one of their fuel blends combustion: CFD analysis and numerical-experimental comparisons of fixed and mobile applications

Madia M.;Cicalese G.;Dalseno L.
2023

Abstract

The capabilities of Computational Fluid Dynamics (CFD) coupled with detailed chemistry simulations are examined in both steady jet diffusion flames and in an internal combustion engine case fuelled with hydrogen. Different approaches to turbulence-chemistry interaction such as the “Laminar Flame Concept” the “Eddy Dissipation Concept” and the “Turbulent Flame Speed Closure” are considered and tested. The results are compared with the experimental data available. Concerning the jet diffusion flames, the combustion processes of hydrogen, methane and one of their fuel blends are investigated on two burner geometries. Different sensitivities (i.e. mesh, turbulence model, turbulent Schmidt number, chemical mechanism) are performed. The study demonstrates that despite the burner geometry considered and the chemical composition of the fuel, the Complex Chemistry with “Eddy Dissipation Concept” is the model that better describes the behaviour of the turbulent flames. On the other hand, the “Laminar Flame Concept” sub-model is characterized by an higher fuel consumption rate, which causes an overestimation of the temperature peak. As for the in-cylinder unsteady simulations, the hydrogen combustion process is better described by the “Turbulent Flame Speed Closure” sub-model, which, unlike the other two, requires the specification of both laminar and turbulent flame speed. Despite different variations being considered, the “Laminar Flame Concept” adoption leads to an unphysically high burning rate, while the Eddy Dissipation Concept sub-model is characterized by an underestimation of the apparent heat release rate, and thus of the pressure peak inside the combustion chamber.
2023
78th Associazione Termotecnica Italiana Annual Congress on Energy Transition: Research and Innovation for Industry, Communities and the Territory, ATI 2023
ita
2023
2648
Madia, M.; Cicalese, G.; Dalseno, L.
Hydrogen, methane and one of their fuel blends combustion: CFD analysis and numerical-experimental comparisons of fixed and mobile applications / Madia, M.; Cicalese, G.; Dalseno, L.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 2648:1(2023). (Intervento presentato al convegno 78th Associazione Termotecnica Italiana Annual Congress on Energy Transition: Research and Innovation for Industry, Communities and the Territory, ATI 2023 tenutosi a ita nel 2023) [10.1088/1742-6596/2648/1/012080].
File in questo prodotto:
File Dimensione Formato  
Madia_2023_J._Phys.__Conf._Ser._2648_012080.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1373909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact