Let r be a positive integer, h(X)∈Fqjavax.xml.bind.JAXBElement@3085cc0e[X], and μq+1 be the subgroup of order q+1 of Fqjavax.xml.bind.JAXBElement@1830d635⁎. It is well known that Xrh(Xq−1) permutes Fqjavax.xml.bind.JAXBElement@70a82a15 if and only if gcd(r,q−1)=1 and Xrh(X)q−1 permutes μq+1. There are many ad hoc constructions of permutation polynomials of Fqjavax.xml.bind.JAXBElement@73c82905 of this type such that h(X)q−1 induces monomial functions on the cosets of a subgroup of μq+1. We give a general construction that can generate, through an algorithm, all permutation polynomials of Fqjavax.xml.bind.JAXBElement@6db36ece with this property, including many which are not known previously. The construction is illustrated explicitly for permutation binomials and trinomials.
A general construction of permutation polynomials of Fq2 / Hou, Xiang-dong; Pallozzi Lavorante, Vincenzo. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - 89:(2023), pp. 1-38. [10.1016/j.ffa.2023.102193]
A general construction of permutation polynomials of Fq2
Pallozzi Lavorante, Vincenzo
2023
Abstract
Let r be a positive integer, h(X)∈Fqjavax.xml.bind.JAXBElement@3085cc0e[X], and μq+1 be the subgroup of order q+1 of Fqjavax.xml.bind.JAXBElement@1830d635⁎. It is well known that Xrh(Xq−1) permutes Fqjavax.xml.bind.JAXBElement@70a82a15 if and only if gcd(r,q−1)=1 and Xrh(X)q−1 permutes μq+1. There are many ad hoc constructions of permutation polynomials of Fqjavax.xml.bind.JAXBElement@73c82905 of this type such that h(X)q−1 induces monomial functions on the cosets of a subgroup of μq+1. We give a general construction that can generate, through an algorithm, all permutation polynomials of Fqjavax.xml.bind.JAXBElement@6db36ece with this property, including many which are not known previously. The construction is illustrated explicitly for permutation binomials and trinomials.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1071579723000357-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
558.69 kB
Formato
Adobe PDF
|
558.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris