A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.

Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians / Corniani, Elsa; Massarenti, Alex. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 397:(2022), pp. 1-50. [10.1016/j.aim.2022.108205]

Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians

Corniani, Elsa;
2022

Abstract

A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.
2022
397
1
50
Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians / Corniani, Elsa; Massarenti, Alex. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 397:(2022), pp. 1-50. [10.1016/j.aim.2022.108205]
Corniani, Elsa; Massarenti, Alex
File in questo prodotto:
File Dimensione Formato  
2012.13999v2.pdf

Open access

Tipologia: AO - Versione originale dell'autore proposta per la pubblicazione
Licenza: [IR] other-oa
Dimensione 534.94 kB
Formato Adobe PDF
534.94 kB Adobe PDF Visualizza/Apri
1-s2.0-S0001870822000214-main.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] publisher-specific-oa
Dimensione 819.23 kB
Formato Adobe PDF
819.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1373437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact