A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.
Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians / Corniani, Elsa; Massarenti, Alex. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 397:(2022), pp. 1-50. [10.1016/j.aim.2022.108205]
Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians
Corniani, Elsa;
2022
Abstract
A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.| File | Dimensione | Formato | |
|---|---|---|---|
|
2012.13999v2.pdf
Open access
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Licenza:
[IR] other-oa
Dimensione
534.94 kB
Formato
Adobe PDF
|
534.94 kB | Adobe PDF | Visualizza/Apri |
|
1-s2.0-S0001870822000214-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] publisher-specific-oa
Dimensione
819.23 kB
Formato
Adobe PDF
|
819.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




