Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.

FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries / Montepietra, Daniele; Tesei, Giulio; Martins, João M.; Kunze, Micha B. A.; Best, Robert B.; Lindorff-Larsen, Kresten. - In: COMMUNICATIONS BIOLOGY. - ISSN 2399-3642. - 7:1(2024), pp. N/A-N/A. [10.1038/s42003-024-05910-6]

FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries

Montepietra, Daniele;
2024

Abstract

Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
2024
7
1
N/A
N/A
FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries / Montepietra, Daniele; Tesei, Giulio; Martins, João M.; Kunze, Micha B. A.; Best, Robert B.; Lindorff-Larsen, Kresten. - In: COMMUNICATIONS BIOLOGY. - ISSN 2399-3642. - 7:1(2024), pp. N/A-N/A. [10.1038/s42003-024-05910-6]
Montepietra, Daniele; Tesei, Giulio; Martins, João M.; Kunze, Micha B. A.; Best, Robert B.; Lindorff-Larsen, Kresten
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1530845413.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1373436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact