Few studies have explored the immobilization of organic macromolecules within the geopolymer matrix, and some have found their chemical instability in the highly alkaline geopolymerization media. The present work reports on the feasibility of encapsulating the potentially toxic acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity. The proper structural, chemical, and mechanical stabilities of the final products were ascertained using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye integrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition, the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopolymerization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above 20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The results reported herein provide a useful approach for the safe removal of toxic macromolecules by means of encapsulation within the geopolymer matrix.
Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study / D'Angelo, A.; Vertuccio, L.; Leonelli, C.; Alzeer, M. I. M.; Catauro, M.. - In: POLYMERS. - ISSN 2073-4360. - 15:3(2023), pp. 1-16. [10.3390/polym15030675]
Entrapment of Acridine Orange in Metakaolin-Based Geopolymer: A Feasibility Study
Leonelli C.Writing – Review & Editing
;
2023
Abstract
Few studies have explored the immobilization of organic macromolecules within the geopolymer matrix, and some have found their chemical instability in the highly alkaline geopolymerization media. The present work reports on the feasibility of encapsulating the potentially toxic acridine orange (AO) dye in a metakaolin based geopolymer while maintaining its structural integrity. The proper structural, chemical, and mechanical stabilities of the final products were ascertained using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric (TGA/DTG), and mechanical analyses, whereas the dye integrity and its stability inside the geopolymer were investigated by the UV-Vis analysis. In addition, the antimicrobial activity was investigated. The FT-IR and XRD analyses confirmed the geopolymerization occurrence, whereas the TGA/DTG and mechanical (compressive and flexural) strength revealed that the addition of 0.31% (AO mg/ sodium silicate L) of AO to the fresh paste did not affect the thermal stability and the mechanical properties (above 6 MPa in flexural strength and above 20 MPa for compressive strength) of the hardened product. UV-Vis spectroscopy revealed that the dye did not undergo chemical degradation nor was it released from the geopolymer matrix. The results reported herein provide a useful approach for the safe removal of toxic macromolecules by means of encapsulation within the geopolymer matrix.File | Dimensione | Formato | |
---|---|---|---|
polymers 2023_Acridina.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
4.7 MB
Formato
Adobe PDF
|
4.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris