In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.
Calling for a comprehensive risk assessment of selenium in drinking water / Vinceti, Marco; Mazzoli, Riccardo; Wise, Lauren A.; Veneri, Federica; Filippini, Tommaso. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 966:(2025), pp. N/A-N/A. [10.1016/j.scitotenv.2025.178700]
Calling for a comprehensive risk assessment of selenium in drinking water
Vinceti, Marco;Mazzoli, Riccardo;Veneri, Federica;Filippini, Tommaso
2025
Abstract
In the last two decades, research has elucidated that selenium, a trace element, has both nutritional and toxicological effects on human health, depending on its dose and chemical form. Recent animal, laboratory, and human studies have shown harmful effects of certain selenium species at specific exposure levels, prompting the need to reassess overall exposure to this element, including that occurring through drinking water, a primary source of inorganic selenium. Drinking water selenium standards worldwide are scarce and existing standards are inconsistent, likely because they have been informed by an incomplete and outdated assessment of the scientific evidence. Incorporating all the available human and laboratory evidence into a precautionary regulatory framework indicates that a drinking water limit of around 5 μg/L of selenium is needed to protect human health, i.e. with an uncertainty factor of 2 versus the lowest adverse effect level observed in human studies, and that higher values may pose unacceptable risks to humans. Despite the rarity of such high levels of selenium in underground and potable waters, coal mining and other sources of environmental pollution as well as geological factors may raise drinking water selenium content above a safe threshold, triggering the need to protect consumers, and to face challenging technological issues for selenium removal, currently under active investigation.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0048969725003341-main.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris