Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation.

Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data / Lapenna, M.; Tsamos, A.; Faglioni, F.; Fioresi, R.; Zanchetta, F.; Bruno, G.. - In: DISCOVER APPLIED SCIENCES. - ISSN 3004-9261. - 6:6(2024), pp. 313-321. [10.1007/s42452-024-05985-0]

Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data

Lapenna M.
Writing – Original Draft Preparation
;
Faglioni F.
Methodology
;
2024

Abstract

Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation.
2024
6
6
313
321
Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data / Lapenna, M.; Tsamos, A.; Faglioni, F.; Fioresi, R.; Zanchetta, F.; Bruno, G.. - In: DISCOVER APPLIED SCIENCES. - ISSN 3004-9261. - 6:6(2024), pp. 313-321. [10.1007/s42452-024-05985-0]
Lapenna, M.; Tsamos, A.; Faglioni, F.; Fioresi, R.; Zanchetta, F.; Bruno, G.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1076679779.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] creative-commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1372434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact