Reducing CO2 emissions is becoming a particularly important goal for motorcycle manufacturers. A fully electric transition still seems far away, given the difficulties in creating an electric motorcycle with an acceptable range and mass. This opens up opportunities for the application of hybrid powertrains in motorcycles. Managing mass, cost, and volume is a challenging issue for motorcycles; therefore, an MHEV architecture represents an interesting opportunity, as it is a low-complexity and low-cost solution. Firstly, in this work, an adequate sizing of the powertrain components is studied for the maximum reduction in fuel consumption. This is performed by analyzing many different system configurations with different hybridization ratios. A 1D simulation of the motorcycle traveling along the homologation cycle (WMTC) is performed, and the powerunit use strategy is optimized for each configuration using the Dynamic Programming technique. The results are analyzed in order to highlight the impact of kinetic energy recovery and engine load-point shifting on fuel consumption reduction. The results show the applicability of MHEV technology to road motorcycles, thus providing a useful tool to analyze the cost/benefit ratio of this technology. The developed methodology is also suitable for different vehicles once a specific test cycle is known.
Feasibility Study on MHEV Application for Motorbikes: Components Sizing, Strategy Optimization through Dynamic Programming and Analysis of Possible Benefits / Mangeruga, V.; Cusati, D.; Raimondi, F.; Giacopini, M.. - In: VEHICLES. - ISSN 2624-8921. - 6:3(2024), pp. 1442-1467. [10.3390/vehicles6030068]
Feasibility Study on MHEV Application for Motorbikes: Components Sizing, Strategy Optimization through Dynamic Programming and Analysis of Possible Benefits
Mangeruga V.
;Cusati D.;Giacopini M.
2024
Abstract
Reducing CO2 emissions is becoming a particularly important goal for motorcycle manufacturers. A fully electric transition still seems far away, given the difficulties in creating an electric motorcycle with an acceptable range and mass. This opens up opportunities for the application of hybrid powertrains in motorcycles. Managing mass, cost, and volume is a challenging issue for motorcycles; therefore, an MHEV architecture represents an interesting opportunity, as it is a low-complexity and low-cost solution. Firstly, in this work, an adequate sizing of the powertrain components is studied for the maximum reduction in fuel consumption. This is performed by analyzing many different system configurations with different hybridization ratios. A 1D simulation of the motorcycle traveling along the homologation cycle (WMTC) is performed, and the powerunit use strategy is optimized for each configuration using the Dynamic Programming technique. The results are analyzed in order to highlight the impact of kinetic energy recovery and engine load-point shifting on fuel consumption reduction. The results show the applicability of MHEV technology to road motorcycles, thus providing a useful tool to analyze the cost/benefit ratio of this technology. The developed methodology is also suitable for different vehicles once a specific test cycle is known.File | Dimensione | Formato | |
---|---|---|---|
vehicles-06-00068-with-cover.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris