Looping patterns, where channels divide and reconnect further downstream, are widespread in natural rivers. Here, we build an extensive dataset of different gravel-bed and sand-bed rivers around the world encompassing a wide range of physiographic and sedimentological conditions. Field data show the existence of quasi-universal relations for the anabranches length when scaled with bankfull hydraulic geometry variables of the main upstream channel. The dimensionless length is found to be nearly slope-invariant, identifying a clear difference with respect to deltaic systems. This scaling relationship is explained by interpreting the dynamics of river loops as basically controlled by a two-way interaction between their constitutive elements, bifurcations and confluences. The identification of a quasi-universal length scale provides insight on the morphological evolution of multi-thread networks and constitutes a key information for the design of self-sustaining river restoration interventions.
Quasi-Universal Length Scale of River Anabranches / Ragno, N.; Redolfi, M.; Tubino, M.. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - 49:16(2022), pp. 1-9. [10.1029/2022GL099928]
Quasi-Universal Length Scale of River Anabranches
Redolfi M.;
2022
Abstract
Looping patterns, where channels divide and reconnect further downstream, are widespread in natural rivers. Here, we build an extensive dataset of different gravel-bed and sand-bed rivers around the world encompassing a wide range of physiographic and sedimentological conditions. Field data show the existence of quasi-universal relations for the anabranches length when scaled with bankfull hydraulic geometry variables of the main upstream channel. The dimensionless length is found to be nearly slope-invariant, identifying a clear difference with respect to deltaic systems. This scaling relationship is explained by interpreting the dynamics of river loops as basically controlled by a two-way interaction between their constitutive elements, bifurcations and confluences. The identification of a quasi-universal length scale provides insight on the morphological evolution of multi-thread networks and constitutes a key information for the design of self-sustaining river restoration interventions.File | Dimensione | Formato | |
---|---|---|---|
Ragno_et_al_2022_GRL.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
6.56 MB
Formato
Adobe PDF
|
6.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris