Transformer-based language models like BERT have revolutionized Natural Language Processing (NLP) research, but their application to historical languages remains underexplored. This paper investigates the adaptation of BERT-based embedding models for Latin, a language central to the study of the sacred texts of Christianity. Focusing on Jerome’s Vulgate, pre-Vulgate Latin translations of the Bible, and patristic commentaries such as Augustine’s De Genesi ad litteram, we address the challenges posed by Latin’s complex syntax, specialized vocabulary, and historical variations at the orthographic, morphological, and semantic levels. In particular, we propose fine-tuning existing BERT-based embedding models on annotated Latin corpora, using self-generated hard negatives to improve performance in detecting biblical references in early Christian literature in Latin. Experimental results demonstrate the ability of BERT-based models to identify citations of and allusions to the Bible(s) in ancient Christian commentaries while highlighting the complexities and challenges of this field. By integrating NLP techniques with humanistic expertise, this work provides a case study on intertextual analysis in Latin patristic works. It underscores the transformative potential of interdisciplinary approaches, advancing computational tools for sacred text studies and bridging the gap between philology and computational analysis.

Benchmarking BERT-based Models for Latin: A Case Study on Biblical References in Ancient Christian Literature / Caffagni, Davide; Cocchi, Federico; Mambelli, Anna; Tutrone, Fabio; Zanella, Marco; Cornia, Marcella; Cucchiara, Rita. - (2025). (Intervento presentato al convegno 21st Conference on Information and Research Science Connecting to Digital and Library Science tenutosi a Udine, Italy nel February 20-21).

Benchmarking BERT-based Models for Latin: A Case Study on Biblical References in Ancient Christian Literature

Davide Caffagni;Federico Cocchi;Anna Mambelli;Marcella Cornia;Rita Cucchiara
2025

Abstract

Transformer-based language models like BERT have revolutionized Natural Language Processing (NLP) research, but their application to historical languages remains underexplored. This paper investigates the adaptation of BERT-based embedding models for Latin, a language central to the study of the sacred texts of Christianity. Focusing on Jerome’s Vulgate, pre-Vulgate Latin translations of the Bible, and patristic commentaries such as Augustine’s De Genesi ad litteram, we address the challenges posed by Latin’s complex syntax, specialized vocabulary, and historical variations at the orthographic, morphological, and semantic levels. In particular, we propose fine-tuning existing BERT-based embedding models on annotated Latin corpora, using self-generated hard negatives to improve performance in detecting biblical references in early Christian literature in Latin. Experimental results demonstrate the ability of BERT-based models to identify citations of and allusions to the Bible(s) in ancient Christian commentaries while highlighting the complexities and challenges of this field. By integrating NLP techniques with humanistic expertise, this work provides a case study on intertextual analysis in Latin patristic works. It underscores the transformative potential of interdisciplinary approaches, advancing computational tools for sacred text studies and bridging the gap between philology and computational analysis.
2025
21st Conference on Information and Research Science Connecting to Digital and Library Science
Udine, Italy
February 20-21
Caffagni, Davide; Cocchi, Federico; Mambelli, Anna; Tutrone, Fabio; Zanella, Marco; Cornia, Marcella; Cucchiara, Rita
Benchmarking BERT-based Models for Latin: A Case Study on Biblical References in Ancient Christian Literature / Caffagni, Davide; Cocchi, Federico; Mambelli, Anna; Tutrone, Fabio; Zanella, Marco; Cornia, Marcella; Cucchiara, Rita. - (2025). (Intervento presentato al convegno 21st Conference on Information and Research Science Connecting to Digital and Library Science tenutosi a Udine, Italy nel February 20-21).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1371269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact