Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.
Disentangling superconducting and magnetic orders in NaFe_1-xNi_xAs using muon spin rotation / Cheung, Sky C.; Guguchia, Zurab; Frandsen, Benjamin A.; Gong, Zizhou; Yamakawa, Kohtaro; Almeida, Dalson E.; Onuorah, Ifeanyi John; Bonfa, Pietro; Miranda, Eduardo; Wang, Weiyi; Tam, David W.; Song, Yu; Cao, Chongde; Cai, Yipeng; Hallas, Alannah M.; Wilson, Murray N.; Munsie, Timothy J. S.; Luke, Graeme; Chen, Bijuan; Dai, Guangyang; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Fernandes, Rafael M.; Roberto De Renzi, ; Dai, Pengcheng; Uemura, Yasutomo J.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 97:22(2018), p. 224508. [10.1103/PhysRevB.97.224508]
Disentangling superconducting and magnetic orders in NaFe_1-xNi_xAs using muon spin rotation
Pietro Bonfa;
2018
Abstract
Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.| File | Dimensione | Formato | |
|---|---|---|---|
|
1802.04458Cheung.NaFeNiAs.pdf
Accesso riservato
Dimensione
7.38 MB
Formato
Adobe PDF
|
7.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
PhysRevB.97.224508-Cheung-NaFeAs.pdf
Accesso riservato
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




