The weak long-term photocatalytic performance of photocatalytic cementitious materials under real-life service conditions has always been one of the main factors restricting their large-scale application. A novel stable three-dimensional structure of S-g-C3N4/MgAl-LDH was constructed by composing S-g-C3N4 with MgAl-LDH, aiming to improve its compatibility with cement mortar to achieve ideal long-term photocatalytic performance under natural exposure. Taking S-g-C3N4 as reference, the possible contributions of MgAl-LDH on improving the mechanical strength and long-term photocatalytic performance of mortar was analyzed by XRD, TG/DTG, SEM-EDX and isothermal calorimetry. The result shows that since the high specific surface area and refinement of MgAl-LDH, the dense surface morphology and fewer surface defects jointly promote the improvement of strength. When the content of S-g-C3N4/MgAl-LDH is 6 %, the 28d compressive strength of composite mortar is excellent, which is 28.7 % higher than the pure cement mortar. More importantly, under the stimulation of the calcium-rich layer on the surface of S-g-C3N4/MgAl-LDH, the accumulation of a large amount of gelling hydration products is beneficial to the stable long-term photocatalytic performance of S-g-C3N4/MgAl-LDH doped mortar. After 180 days of natural exposure, the NOx removal rate of the CMSL-8 % sample can still remain at 68.3 % of the original value (328 μmol·m−2·h−1). This research provides a new theoretical basis for photocatalytic cementitious materials to achieve ideal long-term photocatalytic performance.

New S-g-C3N4 based photocatalytic mortar with long-term photocatalytic performance by constructing three-dimensional structure Mg-Al layered double hydroxides / Xu, J.; Yang, Z.; Lu, L.; Wang, W.; Briseghella, B.; Marano, G. C.. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - 438:(2024), pp. 1-22. [10.1016/j.conbuildmat.2024.137199]

New S-g-C3N4 based photocatalytic mortar with long-term photocatalytic performance by constructing three-dimensional structure Mg-Al layered double hydroxides

Briseghella B.;
2024

Abstract

The weak long-term photocatalytic performance of photocatalytic cementitious materials under real-life service conditions has always been one of the main factors restricting their large-scale application. A novel stable three-dimensional structure of S-g-C3N4/MgAl-LDH was constructed by composing S-g-C3N4 with MgAl-LDH, aiming to improve its compatibility with cement mortar to achieve ideal long-term photocatalytic performance under natural exposure. Taking S-g-C3N4 as reference, the possible contributions of MgAl-LDH on improving the mechanical strength and long-term photocatalytic performance of mortar was analyzed by XRD, TG/DTG, SEM-EDX and isothermal calorimetry. The result shows that since the high specific surface area and refinement of MgAl-LDH, the dense surface morphology and fewer surface defects jointly promote the improvement of strength. When the content of S-g-C3N4/MgAl-LDH is 6 %, the 28d compressive strength of composite mortar is excellent, which is 28.7 % higher than the pure cement mortar. More importantly, under the stimulation of the calcium-rich layer on the surface of S-g-C3N4/MgAl-LDH, the accumulation of a large amount of gelling hydration products is beneficial to the stable long-term photocatalytic performance of S-g-C3N4/MgAl-LDH doped mortar. After 180 days of natural exposure, the NOx removal rate of the CMSL-8 % sample can still remain at 68.3 % of the original value (328 μmol·m−2·h−1). This research provides a new theoretical basis for photocatalytic cementitious materials to achieve ideal long-term photocatalytic performance.
2024
438
1
22
New S-g-C3N4 based photocatalytic mortar with long-term photocatalytic performance by constructing three-dimensional structure Mg-Al layered double hydroxides / Xu, J.; Yang, Z.; Lu, L.; Wang, W.; Briseghella, B.; Marano, G. C.. - In: CONSTRUCTION AND BUILDING MATERIALS. - ISSN 0950-0618. - 438:(2024), pp. 1-22. [10.1016/j.conbuildmat.2024.137199]
Xu, J.; Yang, Z.; Lu, L.; Wang, W.; Briseghella, B.; Marano, G. C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1367795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact