The distribution and timing of Neogene extensional structures along the offshore Tanzania margin and their influence on submarine sediment dispersal pathways remain poorly constrained. This knowledge gap limits understanding of the propagation of the East African Rift System (EARS) in the western Indian Ocean. In this study, we use 2D and 3D seismic reflection data to explore a portion of the upper slope region offshore the Rufiji River delta which led to the discovery of a new extensional structure. Horizon maps and seismic sections extracted from the 3D volume reveal that the slope was intersected by W-E-oriented turbidite channels during the Cenozoic until the early Pliocene (5.3 Ma). Since then, the opening of this graben, whose timing is also constrained by stratigraphic horizon flattening, has led to a southward reorientation of these channels, a pattern that persists today, as evidenced by the flow direction of the channels at the modern seafloor. 2D seismic profiles reaching depths of 10 s two-way travel time (TWT) indicate that the formation of this graben is not related to the reactivation of Mesozoic structures. In detail, seismic data show that the acoustic basement is intersected by extensional faults, likely related to the Jurassic rift tectonics, which is reactivated during the middle Cretaceous forming a gentle monocline. The lack of deformation in the post-Cretaceous suggests a period of tectonic quiescence which persists until the establishment of a new extensional regime responsible for the graben's opening, indicating a decoupling between Mesozoic and Neogene tectonics. Considering the similarity in kinematics, orientation and timing between the graben and other structures along the margin, onshore and offshore, we interpret this graben to be generated by a later tectonic phase of the EARS. These new results may indicate that tectonic stresses associated with the EARS migrated from the Tanzania craton, where the oldest rift structures are dated to ca. 25 Ma, to the western Indian Ocean, where the tectonic activity started during the middle-late Miocene to Pliocene.
Re-routing of submarine channels by Plio-Quaternary extensional tectonics along the Tanzania margin and implications for an offshore branch of the East African Rift System / Dottorestagna, M.; Maselli, V.; Reynolds, D. J.; Grujic, D.; Iacopini, D.; Reynolds, P.; Tewari, S.; van Vliet, A.. - In: BASIN RESEARCH. - ISSN 0950-091X. - 36:3(2024), pp. e12878-e12878. [10.1111/bre.12878]
Re-routing of submarine channels by Plio-Quaternary extensional tectonics along the Tanzania margin and implications for an offshore branch of the East African Rift System
Maselli V.;
2024
Abstract
The distribution and timing of Neogene extensional structures along the offshore Tanzania margin and their influence on submarine sediment dispersal pathways remain poorly constrained. This knowledge gap limits understanding of the propagation of the East African Rift System (EARS) in the western Indian Ocean. In this study, we use 2D and 3D seismic reflection data to explore a portion of the upper slope region offshore the Rufiji River delta which led to the discovery of a new extensional structure. Horizon maps and seismic sections extracted from the 3D volume reveal that the slope was intersected by W-E-oriented turbidite channels during the Cenozoic until the early Pliocene (5.3 Ma). Since then, the opening of this graben, whose timing is also constrained by stratigraphic horizon flattening, has led to a southward reorientation of these channels, a pattern that persists today, as evidenced by the flow direction of the channels at the modern seafloor. 2D seismic profiles reaching depths of 10 s two-way travel time (TWT) indicate that the formation of this graben is not related to the reactivation of Mesozoic structures. In detail, seismic data show that the acoustic basement is intersected by extensional faults, likely related to the Jurassic rift tectonics, which is reactivated during the middle Cretaceous forming a gentle monocline. The lack of deformation in the post-Cretaceous suggests a period of tectonic quiescence which persists until the establishment of a new extensional regime responsible for the graben's opening, indicating a decoupling between Mesozoic and Neogene tectonics. Considering the similarity in kinematics, orientation and timing between the graben and other structures along the margin, onshore and offshore, we interpret this graben to be generated by a later tectonic phase of the EARS. These new results may indicate that tectonic stresses associated with the EARS migrated from the Tanzania craton, where the oldest rift structures are dated to ca. 25 Ma, to the western Indian Ocean, where the tectonic activity started during the middle-late Miocene to Pliocene.File | Dimensione | Formato | |
---|---|---|---|
Basin Research - 2024 - Dottore Stagna - Re‐routing of submarine channels by Plio‐Quaternary extensional tectonics along_compressed (1).pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris