Nowadays, state-of-the-art AI-based generative models represent a viable solution to overcome privacy issues and biases in the collection of datasets containing personal information, such as faces. Following this intuition, in this paper we introduce ONOT11One, No one and One hundred Thousand (L. Pirandello, 1926), a synthetic dataset specifically focused on the generation of high-quality faces in adherence to the requirements of the ISO/IEC 39794-5 standards that, following the guidelines of the International Civil Aviation Organization (ICAO), defines the interchange formats of face images in electronic Machine-Readable Travel Documents (eMRTD). The strictly controlled and varied mugshot images included in ONOT are useful in research fields related to the analysis of face images in eMRTD, such as Morphing Attack Detection and Face Quality Assessment. The dataset is publicly released2https://miatbiolab.csr.unibo.it/icao-synthetic-dataset, in combination with the generation procedure details in order to improve the reproducibility and enable future extensions.

ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset / Di Domenico, N.; Borghi, G.; Franco, A.; Maltoni, D.. - (2024), pp. 1-10. (Intervento presentato al convegno 18th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2024 tenutosi a tur nel 2024) [10.1109/FG59268.2024.10581986].

ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset

Borghi G.
;
2024

Abstract

Nowadays, state-of-the-art AI-based generative models represent a viable solution to overcome privacy issues and biases in the collection of datasets containing personal information, such as faces. Following this intuition, in this paper we introduce ONOT11One, No one and One hundred Thousand (L. Pirandello, 1926), a synthetic dataset specifically focused on the generation of high-quality faces in adherence to the requirements of the ISO/IEC 39794-5 standards that, following the guidelines of the International Civil Aviation Organization (ICAO), defines the interchange formats of face images in electronic Machine-Readable Travel Documents (eMRTD). The strictly controlled and varied mugshot images included in ONOT are useful in research fields related to the analysis of face images in eMRTD, such as Morphing Attack Detection and Face Quality Assessment. The dataset is publicly released2https://miatbiolab.csr.unibo.it/icao-synthetic-dataset, in combination with the generation procedure details in order to improve the reproducibility and enable future extensions.
2024
18th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2024
tur
2024
1
10
Di Domenico, N.; Borghi, G.; Franco, A.; Maltoni, D.
ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset / Di Domenico, N.; Borghi, G.; Franco, A.; Maltoni, D.. - (2024), pp. 1-10. (Intervento presentato al convegno 18th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2024 tenutosi a tur nel 2024) [10.1109/FG59268.2024.10581986].
File in questo prodotto:
File Dimensione Formato  
FG_2024___ICAO_dataset.pdf

Open access

Tipologia: AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione 16.52 MB
Formato Adobe PDF
16.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1367126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact