In response to the rising threat of the face morphing attack, this paper introduces and explores the potential of Video-based Morphing Attack Detection (V-MAD) systems in real-world operational scenarios. While current morphing attack detection methods primarily focus on a single or a pair of images, V-MAD is based on video sequences, exploiting the video streams acquired by face verification tools available, for instance, at airport gates. We show for the first time the advantages that the availability of multiple probe frames brings to the morphing attack detection task, especially in scenarios where the quality of probe images is varied. Experimental results on a real operational database demonstrate that video sequences represent valuable information for increasing the performance of morphing attack detection systems.

V-MAD: Video-based Morphing Attack Detection in Operational Scenarios / Borghi, G.; Franco, A.; Di Domenico, N.; Ferrara, M.; Maltoni, D.. - (2024), pp. 1-10. ( 18th IEEE International Joint Conference on Biometrics, IJCB 2024 Buffalo, NY, USA SEP 15-18, 2024) [10.1109/IJCB62174.2024.10744469].

V-MAD: Video-based Morphing Attack Detection in Operational Scenarios

Borghi G.
;
2024

Abstract

In response to the rising threat of the face morphing attack, this paper introduces and explores the potential of Video-based Morphing Attack Detection (V-MAD) systems in real-world operational scenarios. While current morphing attack detection methods primarily focus on a single or a pair of images, V-MAD is based on video sequences, exploiting the video streams acquired by face verification tools available, for instance, at airport gates. We show for the first time the advantages that the availability of multiple probe frames brings to the morphing attack detection task, especially in scenarios where the quality of probe images is varied. Experimental results on a real operational database demonstrate that video sequences represent valuable information for increasing the performance of morphing attack detection systems.
2024
18th IEEE International Joint Conference on Biometrics, IJCB 2024
Buffalo, NY, USA
SEP 15-18, 2024
1
10
Borghi, G.; Franco, A.; Di Domenico, N.; Ferrara, M.; Maltoni, D.
V-MAD: Video-based Morphing Attack Detection in Operational Scenarios / Borghi, G.; Franco, A.; Di Domenico, N.; Ferrara, M.; Maltoni, D.. - (2024), pp. 1-10. ( 18th IEEE International Joint Conference on Biometrics, IJCB 2024 Buffalo, NY, USA SEP 15-18, 2024) [10.1109/IJCB62174.2024.10744469].
File in questo prodotto:
File Dimensione Formato  
2404.06963v1.pdf

Open access

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Licenza: [IR] other-oa
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri
V-MAD_Video-based_Morphing_Attack_Detection_in_Operational_Scenarios.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Licenza: [IR] closed
Dimensione 590.73 kB
Formato Adobe PDF
590.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1367123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact