Procedural implicit surfaces are a popular representation for shape modeling. They provide a simple framework for complex geometric operations such as Booleans, blending and deformations. However, their editability remains a challenging task: as the definition of the shape is purely implicit, direct manipulation of the shape cannot be performed. Thus, parameters of the model are often exposed through abstract sliders, which have to be nontrivially created by the user and understood by others for each individual model to modify. Further, each of these sliders needs to be set one by one to achieve the desired appearance. To circumvent this laborious process while preserving editability, we propose to directly manipulate the implicit surface in the viewport. We let the user naturally interact with the output shape, leveraging points on a co-parameterization we design specifically for implicit surfaces, to guide the parameter updates and reach the desired appearance faster. We leverage our automatic differentiation of the procedural implicit surface to propagate interactions made by the user in the viewport to the shape parameters themselves. We further design a solver that uses such information to guide an intuitive and smooth user workflow. We demonstrate different editing processes across multiple implicit shapes and parameters that would be tedious by tuning sliders.

Direct Manipulation of Procedural Implicit Surfaces / Riso, Marzia; Michel, Élie; Paris, Axel; Deschaintre, Valentin; Gaillard, Mathieu; Pellacini, Fabio. - In: ACM TRANSACTIONS ON GRAPHICS. - ISSN 0730-0301. - 43:6(2024), pp. 1-12. [10.1145/3687936]

Direct Manipulation of Procedural Implicit Surfaces

Pellacini, Fabio
2024

Abstract

Procedural implicit surfaces are a popular representation for shape modeling. They provide a simple framework for complex geometric operations such as Booleans, blending and deformations. However, their editability remains a challenging task: as the definition of the shape is purely implicit, direct manipulation of the shape cannot be performed. Thus, parameters of the model are often exposed through abstract sliders, which have to be nontrivially created by the user and understood by others for each individual model to modify. Further, each of these sliders needs to be set one by one to achieve the desired appearance. To circumvent this laborious process while preserving editability, we propose to directly manipulate the implicit surface in the viewport. We let the user naturally interact with the output shape, leveraging points on a co-parameterization we design specifically for implicit surfaces, to guide the parameter updates and reach the desired appearance faster. We leverage our automatic differentiation of the procedural implicit surface to propagate interactions made by the user in the viewport to the shape parameters themselves. We further design a solver that uses such information to guide an intuitive and smooth user workflow. We demonstrate different editing processes across multiple implicit shapes and parameters that would be tedious by tuning sliders.
2024
43
6
1
12
Direct Manipulation of Procedural Implicit Surfaces / Riso, Marzia; Michel, Élie; Paris, Axel; Deschaintre, Valentin; Gaillard, Mathieu; Pellacini, Fabio. - In: ACM TRANSACTIONS ON GRAPHICS. - ISSN 0730-0301. - 43:6(2024), pp. 1-12. [10.1145/3687936]
Riso, Marzia; Michel, Élie; Paris, Axel; Deschaintre, Valentin; Gaillard, Mathieu; Pellacini, Fabio
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1366989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact