Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surfacemodels are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate datadriven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via aweb interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.
MedShapeNet – a large-scale dataset of 3D medical shapes for computer vision / Li, Jianning; Zhou, Zongwei; Yang, Jiancheng; Pepe, Antonio; Gsaxner, Christina; Luijten, Gijs; Qu, Chongyu; Zhang, Tiezheng; Chen, Xiaoxi; Li, Wenxuan; Wodzinski, MAREK MICHAL; Friedrich, Paul; Xie, Kangxian; Jin, Yuan; Ambigapathy, Narmada; Nasca, Enrico; Solak, Naida; Melito Gian, Marco; Duc Vu, Viet; Memon Afaque, R.; Schlachta, Christopher; De Ribaupierre, Sandrine; Patel, Rajnikant; Eagleson, Roy; Chen Xiaojun Mächler, Heinrich; Kirschke Jan, Stefan; de la Rosa, Ezequiel; Christ Patrick, Ferdinand; Hongwei Bran, Li; Ellis David, G.; Aizenberg Michele, R.; Gatidis, Sergios; Küstner, Thomas; Shusharina, Nadya; Heller, Nicholas; Rearczyk, Vincent; Depeursinge, Adrien; Hatt, Mathieu; Sekuboyina, Anjany; Löffler Maximilian, T.; Liebl, Hans; Dorent, Reuben; Vercauteren, Tom; Shapey, Jonathan; Kujawa, Aaron; Cornelissen, Stefan; Langenhuizen, Patrick; Ben-Hamadou, Achraf; Rekik, Ahmed; Pujades, Sergi; Boyer, Edmond; Bolelli, Federico; Grana, Costantino; Lumetti, Luca; Salehi, Hamidreza; Ma, Jun; Zhang, Yao; Gharleghi, Ramtin; Beier, Susann; Sowmya, Arcot; Garza-Villarreal Eduardo, A.; Balducci, Thania; Angeles-Valdez, Diego; Souza, Roberto; Rittner, Leticia; Frayne, Richard; Ji, Yuanfeng; Ferrari, Vincenzo; Chatterjee, Soumick; Dubost, Florian; Schreiber, Stefanie; Mattern, Hendrik; Speck, Oliver; Haehn, Daniel; John, Christoph; Nürnberger, Reas; Pedrosa, João; Ferreira, Carlos; Aresta, Guilherme; Cunha, António; Campilho, Aurélio; Suter, Yannick; Jose, Garcia; Lalande, Alain; Vandenbossche, Vicky; Van Oevelen, Aline; Duquesne, Kate; Mekhzoum, Hamza; Vandemeulebroucke, Jef; Audenaert, Emmanuel; Krebs, Claudia; van Leeuwen, Timo; Vereecke, Evie; Heidemeyer, Hauke; Röhrig, Rainer; Hölzle, Frank; Badeli, Vahid; Krieger, Kathrin; Gunzer, Matthias; Chen, Jianxu; van Meegdenburg, Timo; Dada, Amin; Balzer, Miriam; Fragemann, Jana; Jonske, Frederic; Rempe, Moritz; Malorodov, Stanislav; Bahnsen Fin, H.; Seibold, Constantin; Jaus, Alexander; Marinov, Zdravko; Jaeger, Paul; Stiefelhagen, Rainer; Santos Ana, Sofia; Lindo, Mariana; Ferreira, Ré; Alves, Victor; Kamp, Michael; Abourayya, Amr; Nensa, Felix; Hörst, Fabian; Brehmer, Alexander; Heine, Lukas; Hanusrichter, Yannik; Weßling, Martin; Dudda, Marcel; Podleska Lars, E.; Fink Matthias, A.; Keyl, Julius; Tserpes, Konstantinos; Kim, Moon-Sung; Elhabian, Shireen; Lamecker, Hans; Zukić, Dženan; Paniagua, Beatriz; Wachinger, Christian; Urschler, Martin; Duong, Luc; Wasserthal, Jakob; Hoyer Peter, F.; Basu, Oliver; Maal, Thomas; Witjes Max, H. J.; Schiele, Gregor; Chang, Ti-chiun; Ahmadi, Seyed-Ahmad; Luo, Ping; Menze, Bjoern; Reyes, Mauricio; Deserno Thomas, M.; Davatzikos, Christos; Puladi, Behrus; Fua, Pascal; Yuille Alan, L.; Kleesiek, Jens; Egger, Jan. - In: BIOMEDIZINISCHE TECHNIK. - ISSN 1862-278X. - (2024), pp. 1-20. [10.1515/bmt-2024-0396]
MedShapeNet – a large-scale dataset of 3D medical shapes for computer vision
Wodzinski Marek;Bolelli Federico;Grana Costantino;Lumetti Luca;Garcia Jose;
2024
Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surfacemodels are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate datadriven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via aweb interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.File | Dimensione | Formato | |
---|---|---|---|
2308.16139v5.pdf
Open access
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
7.62 MB
Formato
Adobe PDF
|
7.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris