Convolutional Neural Networks (CNNs) are widely employed in the medical imaging field. In dermoscopic image analysis, the large amount of data provided by the International Skin Imaging Collaboration (ISIC) encouraged the development of several machine learning solutions to the skin lesion images classification problem. This paper introduces an ensemble of image-only based and image-and-metadata based CNN architectures to classify skin lesions as melanoma or non-melanoma. In order to achieve this goal, we analyzed how models performance are affected by the amount of available data, image resolution, data augmentation pipeline, metadata importance and target choice. The proposed solution achieved an AUC score of 0.9477 on the official ISIC2020 test set. All the experiments were performed employing the ECVL and EDDL libraries, developed within the european DeepHealth project.

A Compact Deep Ensemble for High Quality Skin Lesion Classification / Giovanetti, Anita; Canalini, Laura; Perliti Scorzoni, Paolo. - 13373 LNCS:(2022), pp. 510-521. (Intervento presentato al convegno 21st International Conference on Image Analysis and Processing , ICIAP 2022 tenutosi a ita nel 2022) [10.1007/978-3-031-13321-3_45].

A Compact Deep Ensemble for High Quality Skin Lesion Classification

Giovanetti, Anita
;
Canalini, Laura;Perliti Scorzoni, Paolo
2022

Abstract

Convolutional Neural Networks (CNNs) are widely employed in the medical imaging field. In dermoscopic image analysis, the large amount of data provided by the International Skin Imaging Collaboration (ISIC) encouraged the development of several machine learning solutions to the skin lesion images classification problem. This paper introduces an ensemble of image-only based and image-and-metadata based CNN architectures to classify skin lesions as melanoma or non-melanoma. In order to achieve this goal, we analyzed how models performance are affected by the amount of available data, image resolution, data augmentation pipeline, metadata importance and target choice. The proposed solution achieved an AUC score of 0.9477 on the official ISIC2020 test set. All the experiments were performed employing the ECVL and EDDL libraries, developed within the european DeepHealth project.
2022
7-ago-2022
21st International Conference on Image Analysis and Processing , ICIAP 2022
ita
2022
13373 LNCS
510
521
Giovanetti, Anita; Canalini, Laura; Perliti Scorzoni, Paolo
A Compact Deep Ensemble for High Quality Skin Lesion Classification / Giovanetti, Anita; Canalini, Laura; Perliti Scorzoni, Paolo. - 13373 LNCS:(2022), pp. 510-521. (Intervento presentato al convegno 21st International Conference on Image Analysis and Processing , ICIAP 2022 tenutosi a ita nel 2022) [10.1007/978-3-031-13321-3_45].
File in questo prodotto:
File Dimensione Formato  
A Compact Deep Ensemble for High Quality Skin Lesion Classification (2022).pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 779.58 kB
Formato Adobe PDF
779.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1366213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact