We study periodic non-collision solutions to relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T -periodic solutions, parameterized by their winding number around the singularity. The first family is a sequence of local minima, while the second one comes from the application of a new min-max variational principle à la Ghoussoub for non-smooth singular functionals. Secondly, we investigate the minimality of the circular and non-circular periodic solutions of the unforced problem. For this purpose, we combine level estimates of the action functional with an explicit computation of the Morse index of the circular solutions, relying, in turn, on the Conley-Zehnder index of the associated Hamiltonian systems.

Periodic solutions to relativistic Kepler problems: a variational approach / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - 25:3(2024), pp. 1465-1504. [10.2422/2036-2145.202205_016]

Periodic solutions to relativistic Kepler problems: a variational approach

Papini D.
2024

Abstract

We study periodic non-collision solutions to relativistic Kepler problems in the plane. At first, using non-smooth critical point theory, we show that under a general time-periodic external force of gradient type there are two infinite families of T -periodic solutions, parameterized by their winding number around the singularity. The first family is a sequence of local minima, while the second one comes from the application of a new min-max variational principle à la Ghoussoub for non-smooth singular functionals. Secondly, we investigate the minimality of the circular and non-circular periodic solutions of the unforced problem. For this purpose, we combine level estimates of the action functional with an explicit computation of the Morse index of the circular solutions, relying, in turn, on the Conley-Zehnder index of the associated Hamiltonian systems.
2024
25
3
1465
1504
Periodic solutions to relativistic Kepler problems: a variational approach / Boscaggin, A.; Dambrosio, W.; Papini, D.. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - 25:3(2024), pp. 1465-1504. [10.2422/2036-2145.202205_016]
Boscaggin, A.; Dambrosio, W.; Papini, D.
File in questo prodotto:
File Dimensione Formato  
BoDaPa-ASNS2024.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 241.99 kB
Formato Adobe PDF
241.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
BoDaPa_ASNS_definitivo.pdf

Open access

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 414.07 kB
Formato Adobe PDF
414.07 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1365564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact