We derive matrix expressions in closed form for the spectral and bispectral densities of Markov switching bilinear models. Under suitable assumptions, we prove that the sample estimators of the spectral and bispectral density matrices are consistent and asymptotically normally distributed. Simulations and empirical applications confirm the validity of the asymptotic properties and the suitability of the proposed methods for the analysis of time series in the frequency domain.

Bispectral Analysis of Markov Switching Bilinear Models / Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane. - (2025). (Intervento presentato al convegno Italian Statistical Society (SIS) 2024 tenutosi a Bari, Italia nel 17-20 June 2024) [10.1007/978-3-031-64431-3].

Bispectral Analysis of Markov Switching Bilinear Models

maddalena cavicchioli
;
2025

Abstract

We derive matrix expressions in closed form for the spectral and bispectral densities of Markov switching bilinear models. Under suitable assumptions, we prove that the sample estimators of the spectral and bispectral density matrices are consistent and asymptotically normally distributed. Simulations and empirical applications confirm the validity of the asymptotic properties and the suitability of the proposed methods for the analysis of time series in the frequency domain.
2025
Italian Statistical Society (SIS) 2024
Bari, Italia
17-20 June 2024
Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane
Bispectral Analysis of Markov Switching Bilinear Models / Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane. - (2025). (Intervento presentato al convegno Italian Statistical Society (SIS) 2024 tenutosi a Bari, Italia nel 17-20 June 2024) [10.1007/978-3-031-64431-3].
File in questo prodotto:
File Dimensione Formato  
ebookSIS2024.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 59.11 MB
Formato Adobe PDF
59.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1364200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact