Discovered in 2016, the enzyme PETase, secreted by bacterial Ideonella Sakaiensis 201-F6, has an excellent hydrolytic activity toward poly(ethylene terephthalate) (PET) at room temperature, while it decreases at higher temperatures due to the low thermostability. Many variants have been engineered to overcome this limitation, which hinders industrial application. In this work, we systematically compare PETase wild-type (WT) and four mutants (DuraPETase, ThermoPETase, FastPETase, and HotPETase) using standard molecular dynamics (MD) simulations and unbinding free energy calculations. In particular, we analyze the enzymes’ structural characteristics and binding to a tetrameric PET chain (PET4) under two temperature conditions: T1─300 K and T2─350 K. Our results indicate that (i) PET4 forms stable complexes with the five enzymes at room temperature (∼300 K) and (ii) most of the interactions are localized close to the active site of the protein, where the W185 and Y87 residues interact with the aromatic rings of the substrate. Specifically, (iii) the W185 side-chain explores different conformations in each variant (a phenomenon known in the literature as “W185 wobbling”). This suggests that the binding pocket retains structural plasticity and flexibility among the variants, facilitating substrate recognition and localization events at moderate temperatures. Moreover, (iv) PET4 establishes aromatic interactions with the catalytic H237 residue, stabilizing the catalytic triad composed of residues S160-H237-D206, and helping the system achieve an effective configuration for the hydrolysis reaction. Conversely, (v) the binding affinity decreases at a higher temperature (∼350 K), retaining moderate interactions only for HotPETase. Finally, (vi) MD simulations of complexes formed with poly(ethylene-2,5-furan dicarboxylate) (PEF) show no persistent interactions, suggesting that these enzymes are not yet optimized for binding this alternative semiaromatic plastic polymer. Our study offers valuable insights into the structural stability of these enzymes and the molecular determinants driving PET binding onto their surfaces, sheds light on the mechanistic steps that precede the onset of hydrolysis, and provides a foundation for future enzyme optimization.

Structure and Energetics of PET-Hydrolyzing Enzyme Complexes: A Systematic Comparison from Molecular Dynamics Simulations / Berselli, A.; Menziani, M. C.; Muniz-Miranda, Francesco.. - In: JOURNAL OF CHEMICAL INFORMATION AND MODELING. - ISSN 1549-9596. - 64:21(2024), pp. 8236-8257. [10.1021/acs.jcim.4c01369]

Structure and Energetics of PET-Hydrolyzing Enzyme Complexes: A Systematic Comparison from Molecular Dynamics Simulations

Berselli A.
Writing – Original Draft Preparation
;
Menziani M. C.
Writing – Review & Editing
;
Muniz-Miranda Francesco.
Supervision
2024

Abstract

Discovered in 2016, the enzyme PETase, secreted by bacterial Ideonella Sakaiensis 201-F6, has an excellent hydrolytic activity toward poly(ethylene terephthalate) (PET) at room temperature, while it decreases at higher temperatures due to the low thermostability. Many variants have been engineered to overcome this limitation, which hinders industrial application. In this work, we systematically compare PETase wild-type (WT) and four mutants (DuraPETase, ThermoPETase, FastPETase, and HotPETase) using standard molecular dynamics (MD) simulations and unbinding free energy calculations. In particular, we analyze the enzymes’ structural characteristics and binding to a tetrameric PET chain (PET4) under two temperature conditions: T1─300 K and T2─350 K. Our results indicate that (i) PET4 forms stable complexes with the five enzymes at room temperature (∼300 K) and (ii) most of the interactions are localized close to the active site of the protein, where the W185 and Y87 residues interact with the aromatic rings of the substrate. Specifically, (iii) the W185 side-chain explores different conformations in each variant (a phenomenon known in the literature as “W185 wobbling”). This suggests that the binding pocket retains structural plasticity and flexibility among the variants, facilitating substrate recognition and localization events at moderate temperatures. Moreover, (iv) PET4 establishes aromatic interactions with the catalytic H237 residue, stabilizing the catalytic triad composed of residues S160-H237-D206, and helping the system achieve an effective configuration for the hydrolysis reaction. Conversely, (v) the binding affinity decreases at a higher temperature (∼350 K), retaining moderate interactions only for HotPETase. Finally, (vi) MD simulations of complexes formed with poly(ethylene-2,5-furan dicarboxylate) (PEF) show no persistent interactions, suggesting that these enzymes are not yet optimized for binding this alternative semiaromatic plastic polymer. Our study offers valuable insights into the structural stability of these enzymes and the molecular determinants driving PET binding onto their surfaces, sheds light on the mechanistic steps that precede the onset of hydrolysis, and provides a foundation for future enzyme optimization.
2024
64
21
8236
8257
Structure and Energetics of PET-Hydrolyzing Enzyme Complexes: A Systematic Comparison from Molecular Dynamics Simulations / Berselli, A.; Menziani, M. C.; Muniz-Miranda, Francesco.. - In: JOURNAL OF CHEMICAL INFORMATION AND MODELING. - ISSN 1549-9596. - 64:21(2024), pp. 8236-8257. [10.1021/acs.jcim.4c01369]
Berselli, A.; Menziani, M. C.; Muniz-Miranda, Francesco.
File in questo prodotto:
File Dimensione Formato  
berselli-et-al-2024-structure-and-energetics-of-pet-hydrolyzing-enzyme-complexes-a-systematic-comparison-from-molecular.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1364128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact