Recent advancements in Digital Document Restoration (DDR) have led to significant breakthroughs in analyzing highly damaged written artifacts. Among those, there has been an increasing interest in applying Artificial Intelligence techniques for virtually unwrapping and automatically detecting ink on the Herculaneum papyri collection. This collection consists of carbonized scrolls and fragments of documents, which have been digitized via X-ray tomography to allow the development of ad-hoc deep learning-based DDR solutions. In this work, we propose a modification of the Fast Fourier Convolution operator for volumetric data and apply it in a segmentation architecture for ink detection on the challenging Herculaneum papyri, demonstrating its suitability via deep experimental analysis. To encourage the research on this task and the application of the proposed operator to other tasks involving volumetric data, we will release our implementation (https://github.com/aimagelab/vffc).

Volumetric Fast Fourier Convolution for Detecting Ink on the Carbonized Herculaneum Papyri / Quattrini, F.; Pippi, V.; Cascianelli, S.; Cucchiara, R.. - (2023), pp. 1718-1726. (Intervento presentato al convegno 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 tenutosi a fra nel 2023) [10.1109/ICCVW60793.2023.00188].

Volumetric Fast Fourier Convolution for Detecting Ink on the Carbonized Herculaneum Papyri

Quattrini F.
;
Pippi V.;Cascianelli S.;Cucchiara R.
2023

Abstract

Recent advancements in Digital Document Restoration (DDR) have led to significant breakthroughs in analyzing highly damaged written artifacts. Among those, there has been an increasing interest in applying Artificial Intelligence techniques for virtually unwrapping and automatically detecting ink on the Herculaneum papyri collection. This collection consists of carbonized scrolls and fragments of documents, which have been digitized via X-ray tomography to allow the development of ad-hoc deep learning-based DDR solutions. In this work, we propose a modification of the Fast Fourier Convolution operator for volumetric data and apply it in a segmentation architecture for ink detection on the challenging Herculaneum papyri, demonstrating its suitability via deep experimental analysis. To encourage the research on this task and the application of the proposed operator to other tasks involving volumetric data, we will release our implementation (https://github.com/aimagelab/vffc).
2023
2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
fra
2023
1718
1726
Quattrini, F.; Pippi, V.; Cascianelli, S.; Cucchiara, R.
Volumetric Fast Fourier Convolution for Detecting Ink on the Carbonized Herculaneum Papyri / Quattrini, F.; Pippi, V.; Cascianelli, S.; Cucchiara, R.. - (2023), pp. 1718-1726. (Intervento presentato al convegno 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 tenutosi a fra nel 2023) [10.1109/ICCVW60793.2023.00188].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1363932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact