The present work is focused on the analysis of fracture in adhesive bonded Double Cantilever Beam (DCB) specimens with 3D printed nylon substrates. The substrates were obtained using selective laser sintering of polyamide powder and embed sub-surface channels with circular and square cross-section. The proposed strategy allows to mimic the crack trapping effect already observed in a multitude of biological materials, that is originated by the spatial modulation of the driving force available for crack growth. Mechanical tests have shown that the channels induce load fluctuations in the global load-displacement response. A significant increase in the total dissipated energy was observed with respect to bulk samples, i.e. no channels. The observed fluctuations in the global response were associated to the sequential storage and sudden release of elastic energy. Indeed, the spatial modulation of the stiffness around the interfacial region ultimately affects the crack driving force.
Analysis of debonding in bio-inspired interfaces obtained by additive manufacturing / Alfano, M.; Morano, C.; Bruno, L.; Muzzupappa, M.; Pagnotta, L.. - In: PROCEDIA STRUCTURAL INTEGRITY. - ISSN 2452-3216. - 8:(2018), pp. 604-609. (Intervento presentato al convegno 46th Conference on Stress Analysis and Mechanical Engineering Design, AIAS 2017 tenutosi a ita nel 2017) [10.1016/j.prostr.2017.12.059].
Analysis of debonding in bio-inspired interfaces obtained by additive manufacturing
Alfano M.;Bruno L.;
2018
Abstract
The present work is focused on the analysis of fracture in adhesive bonded Double Cantilever Beam (DCB) specimens with 3D printed nylon substrates. The substrates were obtained using selective laser sintering of polyamide powder and embed sub-surface channels with circular and square cross-section. The proposed strategy allows to mimic the crack trapping effect already observed in a multitude of biological materials, that is originated by the spatial modulation of the driving force available for crack growth. Mechanical tests have shown that the channels induce load fluctuations in the global load-displacement response. A significant increase in the total dissipated energy was observed with respect to bulk samples, i.e. no channels. The observed fluctuations in the global response were associated to the sequential storage and sudden release of elastic energy. Indeed, the spatial modulation of the stiffness around the interfacial region ultimately affects the crack driving force.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2452321617305528-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris