High-Static-Low-Dynamic Stiffness (HSLDS) mechanisms exploit nonlinear kinematics to improve the effectiveness of isolators, preserving controlled static deflections while maintaining low natural frequencies. Although extensively studied under harmonic base excitation, there are still few applications considering real seismic signals and little experimental evidence of real-world performance. This study experimentally demonstrates the beneficial effects of HSLDS isolators over linear ones in reducing the vibrations transmitted to the suspended mass under near-fault earthquakes. A tripod mechanism isolator is presented, and a lumped parameter model is formulated considering a piecewise nonlinear–linear stiffness, with dissipation taken into account through viscous and dry friction forces. Experimental shake table tests are conducted considering harmonic base motion to evaluate the isolator transmissibility in the vertical direction. Excellent agreement is observed when comparing the model to the experimental measurements. Finally, the behavior of the isolator is investigated under earthquake inputs, and results are presented using vertical acceleration time histories and spectra, demonstrating the vibration reduction provided by the nonlinear isolator.
Tunable High-Static-Low-Dynamic Stiffness Isolator under Harmonic and Seismic Loads / Iarriccio, G.; Zippo, A.; Eskandary-Malayery, F.; Ilanko, S.; Mochida, Y.; Mace, B.; Pellicano, F.. - In: VIBRATION. - ISSN 2571-631X. - 7:3(2024), pp. 829-843. [10.3390/vibration7030044]
Tunable High-Static-Low-Dynamic Stiffness Isolator under Harmonic and Seismic Loads
Iarriccio G.
;Zippo A.;Pellicano F.
2024
Abstract
High-Static-Low-Dynamic Stiffness (HSLDS) mechanisms exploit nonlinear kinematics to improve the effectiveness of isolators, preserving controlled static deflections while maintaining low natural frequencies. Although extensively studied under harmonic base excitation, there are still few applications considering real seismic signals and little experimental evidence of real-world performance. This study experimentally demonstrates the beneficial effects of HSLDS isolators over linear ones in reducing the vibrations transmitted to the suspended mass under near-fault earthquakes. A tripod mechanism isolator is presented, and a lumped parameter model is formulated considering a piecewise nonlinear–linear stiffness, with dissipation taken into account through viscous and dry friction forces. Experimental shake table tests are conducted considering harmonic base motion to evaluate the isolator transmissibility in the vertical direction. Excellent agreement is observed when comparing the model to the experimental measurements. Finally, the behavior of the isolator is investigated under earthquake inputs, and results are presented using vertical acceleration time histories and spectra, demonstrating the vibration reduction provided by the nonlinear isolator.File | Dimensione | Formato | |
---|---|---|---|
vibration-07-00044.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
8.27 MB
Formato
Adobe PDF
|
8.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris