The human visual system uses saccadic and vergence eyes movements to foveate interesting objects with both eyes, and thus exploring the visual scene. To mimic this biological behavior in active vision, we proposed a bio-inspired integrated system able to learn a functional sensory representation of the environment, together with the motor commands for binocular eye coordination, directly by interacting with the environment itself. The proposed architecture, rather than sequentially combining different functionalities, is a robust integration of different modules that rely on a front-end of learned binocular receptive fields to specialize on different sub-Tasks. The resulting modular architecture is able to detect salient targets in the scene and perform precise binocular saccadic and vergence movement on it. The performances of the proposed approach has been tested on the iCub Simulator, providing a quantitative evaluation of the computational potentiality of the learned sensory and motor resources.
An integrated system based on binocular learned receptive fields for saccade-vergence on visually salient targets / Re, D.; Gibaldi, A.; Sabatini, S. P.; Spratling, M. W.. - 6:(2017), pp. 204-215. (Intervento presentato al convegno 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2017 tenutosi a Porto, PORTUGAL nel FEB 27-MAR 01, 2017) [10.5220/0006124702040215].
An integrated system based on binocular learned receptive fields for saccade-vergence on visually salient targets
Gibaldi A.;
2017
Abstract
The human visual system uses saccadic and vergence eyes movements to foveate interesting objects with both eyes, and thus exploring the visual scene. To mimic this biological behavior in active vision, we proposed a bio-inspired integrated system able to learn a functional sensory representation of the environment, together with the motor commands for binocular eye coordination, directly by interacting with the environment itself. The proposed architecture, rather than sequentially combining different functionalities, is a robust integration of different modules that rely on a front-end of learned binocular receptive fields to specialize on different sub-Tasks. The resulting modular architecture is able to detect salient targets in the scene and perform precise binocular saccadic and vergence movement on it. The performances of the proposed approach has been tested on the iCub Simulator, providing a quantitative evaluation of the computational potentiality of the learned sensory and motor resources.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris