Researchers have sought to infer the relationships between animal form and function for centuries. The study of biomechanics has become an increasingly important tool with which to quantify such relationships. Together analyses of shape and biomechanics can greatly inform our understanding of how animals interact with their environments and allow us to predict ecology in extinct species. They can also provide a sound basis from which we can gain insight into broader macroevolutionary processes. Because the acquisition and processing of food is clearly key to survival, the vertebrate feeding apparatus has received particular attention. Although clearly far less speciose than placental mammals, marsupials, and the broader metatherian clade to which they belong, are characterized by a long fossil history and considerable diversity. Consequently, they have been of critical importance in the study of evolutionary convergence. Assessments of convergence with placentals and predictions of feeding behavior in extinct species, such as the Thylacine (Thylacinus cynocephalus), Marsupial Lion (Thylacoleo carnifex), and the metatherian sabertooth (Thylacosmilus atrox), have generated particularly long-run controversy and debate. Here the study of form, function, and biomechanics in the feeding ecology of marsupials is reviewed, from nineteenth-century observation-based inference, through increasingly quantitatively founded studies incorporating two-dimensional shape analysis, lever mechanics, and beam theory in the twentieth century, to increasingly sophisticated recent investigations based on finite element analysis and three-dimensional morphometrics.
Marsupial Functional Morphology, Biomechanics, and Feeding Ecology / Wroe, S.; Sansalone, G.. - (2023), pp. 453-482. [10.1007/978-3-031-08419-5_40]
Marsupial Functional Morphology, Biomechanics, and Feeding Ecology
Sansalone G.
2023
Abstract
Researchers have sought to infer the relationships between animal form and function for centuries. The study of biomechanics has become an increasingly important tool with which to quantify such relationships. Together analyses of shape and biomechanics can greatly inform our understanding of how animals interact with their environments and allow us to predict ecology in extinct species. They can also provide a sound basis from which we can gain insight into broader macroevolutionary processes. Because the acquisition and processing of food is clearly key to survival, the vertebrate feeding apparatus has received particular attention. Although clearly far less speciose than placental mammals, marsupials, and the broader metatherian clade to which they belong, are characterized by a long fossil history and considerable diversity. Consequently, they have been of critical importance in the study of evolutionary convergence. Assessments of convergence with placentals and predictions of feeding behavior in extinct species, such as the Thylacine (Thylacinus cynocephalus), Marsupial Lion (Thylacoleo carnifex), and the metatherian sabertooth (Thylacosmilus atrox), have generated particularly long-run controversy and debate. Here the study of form, function, and biomechanics in the feeding ecology of marsupials is reviewed, from nineteenth-century observation-based inference, through increasingly quantitatively founded studies incorporating two-dimensional shape analysis, lever mechanics, and beam theory in the twentieth century, to increasingly sophisticated recent investigations based on finite element analysis and three-dimensional morphometrics.File | Dimensione | Formato | |
---|---|---|---|
Wroe & Sansalone 2023 Marsupial feeding mechanics.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
491.55 kB
Formato
Adobe PDF
|
491.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris