A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, the EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the bandgap of the organic semiconductor.
Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors / Zanotti, R.; Sensi, M.; Berto, M.; Paradisi, A.; Bianchi, M.; Greco, P.; Bortolotti, C. A.; Di Lauro, M.; Biscarini, F.. - In: ADVANCED MATERIALS. - ISSN 1521-4095. - (2024), pp. 2410940-2410940. [10.1002/adma.202410940]
Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance: A Unified View of Electrolyte Gated Organic Transistors
Zanotti R.;Sensi M.;Berto M.;Paradisi A.;Bianchi M.;Bortolotti C. A.;Biscarini F.
2024
Abstract
A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, the EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the bandgap of the organic semiconductor.File | Dimensione | Formato | |
---|---|---|---|
Advanced Materials - 2024 - Zanotti - Charge Carrier Density in Organic Semiconductors Modulates the Effective Capacitance .pdf
Open access
Descrizione: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202410940 Con licenza: cc-by
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris