Convolutional Neural Networks (CNNs) have been broadly employed in dermoscopic image analysis, mainly due to the large amount of data gathered by the International Skin Imaging Collaboration (ISIC). But where do neural networks look? Several authors have claimed that the ISIC dataset is affected by strong biases, i.e. spurious correlations between samples that machine learning models unfairly exploit while discarding the useful patterns they are expected to learn. These strong claims have been supported by showing that deep learning models maintain excellent performance even when "no information about the lesion remains" in the debased input images. With this paper, we explore the interpretability of CNNs in dermoscopic image analysis by analyzing which characteristics are considered by autonomous classification algorithms. Starting from a standard setting, experiments presented in this paper gradually conceal well-known crucial dermoscopic features and thoroughly investigate how CNNs performance subsequently evolves. Experimental results carried out on two well-known CNNs, EfficientNet-B3, and ResNet-152, demonstrate that neural networks autonomously learn to extract features that are notoriously important for melanoma detection. Even when some of such features are removed, the others are still enough to achieve satisfactory classification performance. Obtained results demonstrate that literature claims on biases are not supported by carried-out experiments. Finally, to demonstrate the generalization capabilities of state-of-the-art CNN models for skin lesion classification, a large private dataset has been employed as an additional test set.

Investigating the ABCDE Rule in Convolutional Neural Networks / Bolelli, Federico; Lumetti, Luca; Marchesini, Kevin; Candeloro, Ettore; Grana, Costantino. - (2024). (Intervento presentato al convegno 27th International Conference on Pattern Recognition (ICPR) tenutosi a Kolkata, India nel Dec 01-05).

Investigating the ABCDE Rule in Convolutional Neural Networks

Federico Bolelli;Luca Lumetti;Kevin Marchesini;Ettore Candeloro;Costantino Grana
2024

Abstract

Convolutional Neural Networks (CNNs) have been broadly employed in dermoscopic image analysis, mainly due to the large amount of data gathered by the International Skin Imaging Collaboration (ISIC). But where do neural networks look? Several authors have claimed that the ISIC dataset is affected by strong biases, i.e. spurious correlations between samples that machine learning models unfairly exploit while discarding the useful patterns they are expected to learn. These strong claims have been supported by showing that deep learning models maintain excellent performance even when "no information about the lesion remains" in the debased input images. With this paper, we explore the interpretability of CNNs in dermoscopic image analysis by analyzing which characteristics are considered by autonomous classification algorithms. Starting from a standard setting, experiments presented in this paper gradually conceal well-known crucial dermoscopic features and thoroughly investigate how CNNs performance subsequently evolves. Experimental results carried out on two well-known CNNs, EfficientNet-B3, and ResNet-152, demonstrate that neural networks autonomously learn to extract features that are notoriously important for melanoma detection. Even when some of such features are removed, the others are still enough to achieve satisfactory classification performance. Obtained results demonstrate that literature claims on biases are not supported by carried-out experiments. Finally, to demonstrate the generalization capabilities of state-of-the-art CNN models for skin lesion classification, a large private dataset has been employed as an additional test set.
2024
8-ago-2024
27th International Conference on Pattern Recognition (ICPR)
Kolkata, India
Dec 01-05
Bolelli, Federico; Lumetti, Luca; Marchesini, Kevin; Candeloro, Ettore; Grana, Costantino
Investigating the ABCDE Rule in Convolutional Neural Networks / Bolelli, Federico; Lumetti, Luca; Marchesini, Kevin; Candeloro, Ettore; Grana, Costantino. - (2024). (Intervento presentato al convegno 27th International Conference on Pattern Recognition (ICPR) tenutosi a Kolkata, India nel Dec 01-05).
File in questo prodotto:
File Dimensione Formato  
01135.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 9.76 MB
Formato Adobe PDF
9.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1350787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact