The thermal conductivity of classical multicomponent fluids is seemingly affected by the intrinsic arbitrariness in the definition of the atomic energies, and it is ill conditioned numerically, when evaluated from the Green-Kubo theory of linear response. To cope with these two problems, we introduce two new concepts: a convective invariance principle for transport coefficients, in the first case, and multivariate cepstral analysis, in the second. A combination of these two concepts allows one to substantially reduce the noise affecting the estimate of the thermal conductivity from equilibrium molecular dynamics, even for one-component systems.
Theory and Numerical Simulation of Heat Transport in Multicomponent Systems / Bertossa, Riccardo; Grasselli, Federico; Ercole, Loris; Baroni, Stefano. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 122:25(2019), pp. 255901-1-255901-6. [10.1103/PhysRevLett.122.255901]
Theory and Numerical Simulation of Heat Transport in Multicomponent Systems
Grasselli Federico;Baroni Stefano
2019
Abstract
The thermal conductivity of classical multicomponent fluids is seemingly affected by the intrinsic arbitrariness in the definition of the atomic energies, and it is ill conditioned numerically, when evaluated from the Green-Kubo theory of linear response. To cope with these two problems, we introduce two new concepts: a convective invariance principle for transport coefficients, in the first case, and multivariate cepstral analysis, in the second. A combination of these two concepts allows one to substantially reduce the noise affecting the estimate of the thermal conductivity from equilibrium molecular dynamics, even for one-component systems.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.122.255901.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
563.57 kB
Formato
Adobe PDF
|
563.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1808.03341v4.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris