Machine-learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations, enabling accurate simulations of greater size, time scale, and complexity. Given the interpolative nature of these models, the reliability of predictions depends on the position in phase space, and it is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during model training. When using a machine-learning potential to sample a finite-temperature ensemble, the uncertainty on individual configurations translates into an error on thermodynamic averages and leads to a loss of accuracy when the simulation enters a previously unexplored region. Here, we discuss how uncertainty quantification can be used, together with a baseline energy model, or a more robust but less accurate interatomic potential, to obtain more resilient simulations and to support active-learning strategies. Furthermore, we introduce an on-the-fly reweighing scheme that makes it possible to estimate the uncertainty in thermodynamic averages extracted from long trajectories. We present examples covering different types of structural and thermodynamic properties and systems as diverse as water and liquid gallium.
Uncertainty estimation for molecular dynamics and sampling / Imbalzano, Giulio; Zhuang, Yongbin; Kapil, Venkat; Rossi, Kevin; Engel Edgar, A.; Grasselli, Federico; Ceriotti, Michele. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 154:7(2021), pp. 074102-1-074102-16. [10.1063/5.0036522]
Uncertainty estimation for molecular dynamics and sampling
Grasselli Federico
;
2021
Abstract
Machine-learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations, enabling accurate simulations of greater size, time scale, and complexity. Given the interpolative nature of these models, the reliability of predictions depends on the position in phase space, and it is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during model training. When using a machine-learning potential to sample a finite-temperature ensemble, the uncertainty on individual configurations translates into an error on thermodynamic averages and leads to a loss of accuracy when the simulation enters a previously unexplored region. Here, we discuss how uncertainty quantification can be used, together with a baseline energy model, or a more robust but less accurate interatomic potential, to obtain more resilient simulations and to support active-learning strategies. Furthermore, we introduce an on-the-fly reweighing scheme that makes it possible to estimate the uncertainty in thermodynamic averages extracted from long trajectories. We present examples covering different types of structural and thermodynamic properties and systems as diverse as water and liquid gallium.File | Dimensione | Formato | |
---|---|---|---|
Uncertainty_estimation_ML.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris