Implementing nutrient recycling in wastewater treatment plants is essential for sustainable agriculture. In this study, we investigated a biphasic treatment system for anaerobic liquid digestate, which involved natural and K-enriched zeolite for NH4+ recovery (phase 1), followed by struvite crystallization under two conditions: NH4+ excess and Mg2+ excess (phase 2). The adsorption of NH4+ by natural zeolite enabled saving Mg and P reagents, used to achieve target Mg:NH4:PO4 ratios. The reagent use efficiency of struvite precipitation was highest with natural zeolite under NH4+ excess conditions (96%), whereas the other treatments exhibited lower yields. In this condition, the digestate enriched in Ca2+ released by zeolite; however, no P interferences occurred (Ca2+/Mg2+ < 0.5). Fractions of Ca2+ precipitated as CaCO3. Both the isomorphic NH4- and K-struvite occurred, distinguished by calibrating XRPD data (total struvite) with N contents (indicative of NH4+-struvite). The precipitates comprised NH4- and K-struvite at 60% and 30% (calcite at 9%) in the treatment that involved natural zeolite, 65% and 35% with the K-exchanged zeolite, due to higher presence of K+. Concerning the chemical evolution of the treated digestate, fewer alterations occurred for inorganic ions in the treatment that involved natural zeolite (phase 1) with NH4+ excess condition (phase 2), besides for unreacted SO42- derived from the Mg reagent. The recovered zeolite was enriched in N at 0.5%. Struvite precipitates met the EU regulations regarding permissible levels of organic C, P content, and heavy metal impurities, thereby potentially enabling its use as a fertilizer.

Applying Natural and K-Enriched Zeolite Before Struvite Precipitation Improved the Recovery of NH4+ from Liquid Digestate and the Reagent Use Efficiency / Galamini, G.; Ferretti, G.; Medoro, V.; Eftekhari, N.; Favero, M.; Faccini, B.; Coltorti, M.. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH. - ISSN 1735-6865. - 18:3(2024), pp. 1-13. [10.1007/s41742-024-00595-5]

Applying Natural and K-Enriched Zeolite Before Struvite Precipitation Improved the Recovery of NH4+ from Liquid Digestate and the Reagent Use Efficiency

Galamini G.;
2024

Abstract

Implementing nutrient recycling in wastewater treatment plants is essential for sustainable agriculture. In this study, we investigated a biphasic treatment system for anaerobic liquid digestate, which involved natural and K-enriched zeolite for NH4+ recovery (phase 1), followed by struvite crystallization under two conditions: NH4+ excess and Mg2+ excess (phase 2). The adsorption of NH4+ by natural zeolite enabled saving Mg and P reagents, used to achieve target Mg:NH4:PO4 ratios. The reagent use efficiency of struvite precipitation was highest with natural zeolite under NH4+ excess conditions (96%), whereas the other treatments exhibited lower yields. In this condition, the digestate enriched in Ca2+ released by zeolite; however, no P interferences occurred (Ca2+/Mg2+ < 0.5). Fractions of Ca2+ precipitated as CaCO3. Both the isomorphic NH4- and K-struvite occurred, distinguished by calibrating XRPD data (total struvite) with N contents (indicative of NH4+-struvite). The precipitates comprised NH4- and K-struvite at 60% and 30% (calcite at 9%) in the treatment that involved natural zeolite, 65% and 35% with the K-exchanged zeolite, due to higher presence of K+. Concerning the chemical evolution of the treated digestate, fewer alterations occurred for inorganic ions in the treatment that involved natural zeolite (phase 1) with NH4+ excess condition (phase 2), besides for unreacted SO42- derived from the Mg reagent. The recovered zeolite was enriched in N at 0.5%. Struvite precipitates met the EU regulations regarding permissible levels of organic C, P content, and heavy metal impurities, thereby potentially enabling its use as a fertilizer.
2024
18
3
1
13
Applying Natural and K-Enriched Zeolite Before Struvite Precipitation Improved the Recovery of NH4+ from Liquid Digestate and the Reagent Use Efficiency / Galamini, G.; Ferretti, G.; Medoro, V.; Eftekhari, N.; Favero, M.; Faccini, B.; Coltorti, M.. - In: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH. - ISSN 1735-6865. - 18:3(2024), pp. 1-13. [10.1007/s41742-024-00595-5]
Galamini, G.; Ferretti, G.; Medoro, V.; Eftekhari, N.; Favero, M.; Faccini, B.; Coltorti, M.
File in questo prodotto:
File Dimensione Formato  
s41742-024-00595-5 (2).pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1346346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact