Novel mRNA isoforms for two members of the group III metabotropic glutamate receptors (mGluRs), called mGluR7b and mGluR8b, were identified from rat brain cerebral cortex and hippocampus. In both cases, the alternative splicing is generated by a similar out-of-frame insertion in the carboxyl-terminus that results in the replacement of the last 16 amino acids of mGluR7 and mGluR8 by 23 and 16 different amino acids, respectively. Distribution analysis for mGluR7 and mGluR8 isoforms revealed that the two splice variants are generally coexpressed in the same brain areas. The few exceptions were the olfactory bulb, in which only the mGluR7a form could be detected by reverse transcription-polymerase chain reaction, and the lateral reticular and ambiguus nuclei, which showed only mGluR8a labelling. Despite expression in the same regions, different mRNA abundance for the two variants of each receptor were observed. When transiently coexpressed in HEK 293 cells with the phospholipase C-activating chimeric Gαqi9-G-protein, the a and b forms for both receptor subtypes showed a similar pharmacological profile. The rank order of potencies for both was: DL-amino-4-phosphonobutyrate > L-serine-O-phosphate > glutamate. However, the agonist potencies were significantly higher for mGluR8a, b compared with mGluR7a,b. In Xenopus oocytes, glutamate evoked currents only with mGluR8 when coexpressed with Kir 3.1 and 3.4. Glutamate-induced currents were antagonized by the group II/III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine. In conclusion, the two isoforms of each receptor have identical pharmacological profiles when expressed in heterologous systems, despite structural differences in the carboxyl-terminal domains.

Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8 / Corti, C.; Restituito, S.; Rimland, J. M.; Brabet, I.; Corsi, M.; Pin, J. P.; Ferraguti, F.. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - 10:12(1998), pp. 3629-3641. [10.1046/j.1460-9568.1998.00371.x]

Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8

Ferraguti F.
1998

Abstract

Novel mRNA isoforms for two members of the group III metabotropic glutamate receptors (mGluRs), called mGluR7b and mGluR8b, were identified from rat brain cerebral cortex and hippocampus. In both cases, the alternative splicing is generated by a similar out-of-frame insertion in the carboxyl-terminus that results in the replacement of the last 16 amino acids of mGluR7 and mGluR8 by 23 and 16 different amino acids, respectively. Distribution analysis for mGluR7 and mGluR8 isoforms revealed that the two splice variants are generally coexpressed in the same brain areas. The few exceptions were the olfactory bulb, in which only the mGluR7a form could be detected by reverse transcription-polymerase chain reaction, and the lateral reticular and ambiguus nuclei, which showed only mGluR8a labelling. Despite expression in the same regions, different mRNA abundance for the two variants of each receptor were observed. When transiently coexpressed in HEK 293 cells with the phospholipase C-activating chimeric Gαqi9-G-protein, the a and b forms for both receptor subtypes showed a similar pharmacological profile. The rank order of potencies for both was: DL-amino-4-phosphonobutyrate > L-serine-O-phosphate > glutamate. However, the agonist potencies were significantly higher for mGluR8a, b compared with mGluR7a,b. In Xenopus oocytes, glutamate evoked currents only with mGluR8 when coexpressed with Kir 3.1 and 3.4. Glutamate-induced currents were antagonized by the group II/III antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine. In conclusion, the two isoforms of each receptor have identical pharmacological profiles when expressed in heterologous systems, despite structural differences in the carboxyl-terminal domains.
1998
10
12
3629
3641
Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8 / Corti, C.; Restituito, S.; Rimland, J. M.; Brabet, I.; Corsi, M.; Pin, J. P.; Ferraguti, F.. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - 10:12(1998), pp. 3629-3641. [10.1046/j.1460-9568.1998.00371.x]
Corti, C.; Restituito, S.; Rimland, J. M.; Brabet, I.; Corsi, M.; Pin, J. P.; Ferraguti, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1345116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? ND
social impact